ODS-Eurofer钢微观结构及辐照硬化研究

陈哲浩, 段丙皇, 蒙萱, 王铁山

陈哲浩, 段丙皇, 蒙萱, 王铁山. ODS-Eurofer钢微观结构及辐照硬化研究[J]. 原子能科学技术, 2019, 53(11): 2233-2240. DOI: 10.7538/yzk.2018.youxian.0814
引用本文: 陈哲浩, 段丙皇, 蒙萱, 王铁山. ODS-Eurofer钢微观结构及辐照硬化研究[J]. 原子能科学技术, 2019, 53(11): 2233-2240. DOI: 10.7538/yzk.2018.youxian.0814
CHEN Zhehao, DUAN Binghuang, MENG Xuan, WANG Tieshan. Microstructure and Irradiation Induced Hardening of ODS-Eurofer[J]. Atomic Energy Science and Technology, 2019, 53(11): 2233-2240. DOI: 10.7538/yzk.2018.youxian.0814
Citation: CHEN Zhehao, DUAN Binghuang, MENG Xuan, WANG Tieshan. Microstructure and Irradiation Induced Hardening of ODS-Eurofer[J]. Atomic Energy Science and Technology, 2019, 53(11): 2233-2240. DOI: 10.7538/yzk.2018.youxian.0814

ODS-Eurofer钢微观结构及辐照硬化研究

Microstructure and Irradiation Induced Hardening of ODS-Eurofer

  • 摘要: 研究了ODS-Eurofer钢的微观结构及辐照硬化现象。首先用透射电子显微镜(TEM)观察了ODS-Eurofer钢的初始微观组织结构,发现基体中不仅存在几nm至几十nm的氧化物弥散颗粒,还存在具有壳核结构的大尺寸(直径大于100 nm)颗粒,并观察到纳米颗粒对位错线的钉扎作用。随后用能量为5 MeV的Fe2+离子在300 ℃和500 ℃下辐照样品至25 dpa以模拟中子辐照,并用纳米压痕仪和TEM测试表征了辐照所致力学性能和微观结构的变化。结果表明,两种温度下辐照均引起硬度上升,500 ℃时由于辐照产生的点缺陷发生复合,导致硬化效应弱于300 ℃。用TEM观测辐照水平为25 dpa的损伤层发现有少量纳米尺寸位错环,这些位错环是辐照硬化的主要原因。ODS-Eurofer钢初始微观结构对辐照硬化有重要影响,其中晶界、纳米颗粒与基体界面、位错线等能捕获辐照过程中产生的点缺陷,从而抑制辐照位错环的生长。

     

    Abstract: The initial microstructure and irradiation induced hardening of ODS-Eurofer were studied in this work. Transmission electron microscopy (TEM) was used to characterize the microstructure of ODS-Eurofer. Nano-particles with the diameter ranging from several to tens of nanometers and larger particles with core-shell structure (diameter larger than 100 nm) were both observed. Dislocation line was observed to be pinned by nano particles. 5 MeV Fe2+ ions were implanted into ODS-Eurofer up to an irradiated damage of 25 dpa to emulate neutron radiation at 300 ℃ and 500 ℃. Nano-indentation tests and TEM characterizations were conducted to investigate the hardness variations and irradiation defects, respectively. The results show that irradiations at both temperatures of 300 ℃ and 500 ℃ could cause the increase of hardness. Less hardening is observed in the sample irradiated at 500 ℃ due to effective recombination of irradiation-produced point defects. Sparse dislocation loops are observed in the irradiated layer, which accounts for irradiation hardening. Sparse irradiation-produced dislocation loops are related to the initial microstructure of ODS-Eurofer. Grain boundaries, second phase-matrix interfaces, and dislocations can act as sinks to the point defects during irradiation, which impedes the formation and growth of irradiation dislocation loops.

     

  • [1] CHEN T, KIM H, GIGAX J G, et al. Radiation response of oxide-dispersion-strengthened alloy MA956 after self-ion irradiation[J]. Nuclear Instruments Methods in Physics Research, 2017, 409: 259-263.
    [2] 赵雅文,刘柯钊,徐钦英,等. 低能He+辐照对ODS钢性能影响研究[C]∥中国核学会2013年学术年会.北京:中国原子能出版社,2013.
    [3] FIELD K G, BRIGGS S A, SRIDHARAN K, et al. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa[J]. J Nucl Mater, 2017, 495: 20-26.
    [4] NAKAI R, YABUUCHI K, NOGAMI S, et al. The effect of voids on the hardening of body-centered cubic Fe[J]. J Nucl Mater, 2016, 471: 233-238.
    [5] ZINKLE S J, SNEAD L L. Designing radiation resistance in materials for fusion energy[J]. Annu Rev Mater Res, 2014, 44(1): 241-267.
    [6] ZHANG T, VIEH C, WANG K, et al. Irradiation-induced evolution of mechanical properties and microstructure of Eurofer 97[J]. J Nucl Mater, 2014, 450(1-3): 48-53.
    [7] 贺建超,高进,邓东,等. 辐照过程中He对ODS合金中氧化物的影响[J]. 材料工程,2016,44(4):89-93.HE Jianchao, GAO Jin, DENG Dong, et al. Effect of helium on oxides in ODS alloy during ion irradiation[J]. Journal of Materials Engineering, 2016, 44(4): 89-93(in Chinese).
    [8] 范嘉琪. 两种国产低活化铁素体马氏体钢的He离子辐照硬化研究[D]. 兰州:中国科学院近代物理研究所,2016.
    [9] LINDAU R, MÖSLANG A, SCHIRRA M, et al. Mechanical and microstructural properties of a hipped RAFM ODS-steel[J]. J Nucl Mater, 2002, 307(1): 769-772.
    [10] HEINTZE C, BERGNER F, ULBRICHT A, et al. Microstructure of oxide dispersion strengthened Eurofer and iron-chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy[J]. J Nucl Mater, 2011, 416(1): 35-39.
    [11] BERGNER F, HLAWACEK G, HEINTZE C. Helium-ion microscopy, helium-ion irradiation and nanoindentation of Eurofer 97 and ODS Eurofer[J]. J Nucl Mater, 2018, 505: 267-275.
    [12] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J Mater Res, 1992, 7(6): 1564-1583.
    [13] 张广明. 9Cr氧化物弥散强化钢的强化机理研究及性能评价[D]. 北京:北京科技大学,2016.
    [14] LU C, LU Z, XIE R, et al. Microstructure of a 14Cr-ODS ferritic steel before and after helium ion implantation[J]. J Nucl Mater, 2014, 455(1-3): 366-370.
    [15] 卢晨阳. 纳米结构氧化物弥散强化钢的微观结构与辐照效应[D]. 沈阳:东北大学,2014.
    [16] CASTRO V D, MARQUIS E A, LOZANO-PEREZ S, et al. Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe-12Cr alloy[J]. Acta Materialia, 2011, 59(10): 3927-3936.
    [17] KLIMIANKOU M, LINDAU R, MÖSLANG A. Direct correlation between morphology of (Fe,Cr)23C6, precipitates and impact behavior of ODS steels[J]. J Nucl Mater, 2007, 367(10): 173-178.
    [18] HOU X, JENNETT N M, PARLINSKAWOJTAN M. Exploiting interactions between structure size and indentation size effects to determine the characteristic dimension of nano-structured materials by indentation[J]. J Phys D: Appl Phys, 2013, 46(46): 265-301.
    [19] BULL S J. On the origins and mechanisms of the indentation size effect[J]. Z Metallkd, 2003, 94(7): 787-792.
    [20] RAMAR A, BALUC N, SCHÄUBLIN R. Effect of irradiation on the microstructure and the mechanical properties of oxide dispersion strengthened low activation ferritic/martensitic steel[J]. J Nucl Mater, 2007, 367(10): 217-221.
    [21] DING Z N, ZHANG C H, YANG Y T, et al. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions[J]. J Nucl Mater, 2017, 493: 53-61.
    [22] YAO Z. Heavy-ion irradiations of Fe and Fe-Cr model alloys, Part 1: Damage evolution in thin-foils at higher doses[J]. Philos Mag, 2008, 88(21): 2851-2880.
    [23] DUAN B, HEINTZE C, BERGNER F, et al. The effect of the initial microstructure in terms of sink strength on the ion-irradiation-induced hardening of ODS alloys studied by nanoindentation[J]. J Nucl Mater, 2017, 495: 118-127.
    [24] 乔建生,刘永利,万发荣. 500 ℃下中国低活化马氏体钢电子辐照缺陷行为的研究[J]. 核科学与工程,2009,29(4):341-348.QIAO Jiansheng, LIU Yongli, WAN Farong. Study on the defect evolution of China low martensitic steel during electron irradiation at 500 ℃[J]. Chinese Journal of Nuclear Science and Engineering, 2009, 29(4): 341-348(in Chinese).
    [25] ROBERTSON C, PANIGRAHI B K, BALAJI S, et al. Particle stability in model ODS steel irradiated up to 100 dpa at 600 ℃: TEM and nano-indentation investigation[J]. J Nucl Mater, 2012, 426(1-3): 240-246.
    [26] ODETTE G R, ALINGER M J, WIRTH B D. Recent developments in irradiation-resistant steels[J]. Annu Rev Mater Res, 2008, 38(1): 471-503.
    [27] 黄鹤飞,李健健,刘仁多,等. 316奥氏体不锈钢离子辐照损伤中的温度效应研究[J]. 金属学报,2014,50(10):1189-1194.HUANG Hefei, LI Jianjian, LIU Renduo, et al. Temperature effect of Xe ion irradiation to 316 austenitic stainless steel[J]. Acta Metall Sin, 2014, 50(10): 1189-1194(in Chinese).
    [28] ABROMEIT C. Aspects of simulation of neutron damage by ion irradiation[J]. J Nucl Mater, 1994, 216(2): 78-96.
    [29] PASEBANI S, CHARIT I, BURNS J, et al. Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel[J]. J Nucl Mater, 2015, 462: 191-204.
计量
  • 文章访问数:  382
  • HTML全文浏览量:  2
  • PDF下载量:  1370
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-11-19

目录

    /

    返回文章
    返回