高温和超高温气冷堆动力转换方案研究

曲新鹤, 杨小勇, 王捷

曲新鹤, 杨小勇, 王捷. 高温和超高温气冷堆动力转换方案研究[J]. 原子能科学技术, 2019, 53(11): 2148-2156. DOI: 10.7538/yzk.2018.youxian.0835
引用本文: 曲新鹤, 杨小勇, 王捷. 高温和超高温气冷堆动力转换方案研究[J]. 原子能科学技术, 2019, 53(11): 2148-2156. DOI: 10.7538/yzk.2018.youxian.0835
QU Xinhe, YANG Xiaoyong, WANG Jie. Study on Power Conversion Unit of HTGR and VHTR[J]. Atomic Energy Science and Technology, 2019, 53(11): 2148-2156. DOI: 10.7538/yzk.2018.youxian.0835
Citation: QU Xinhe, YANG Xiaoyong, WANG Jie. Study on Power Conversion Unit of HTGR and VHTR[J]. Atomic Energy Science and Technology, 2019, 53(11): 2148-2156. DOI: 10.7538/yzk.2018.youxian.0835

高温和超高温气冷堆动力转换方案研究

Study on Power Conversion Unit of HTGR and VHTR

  • 摘要: 动力转换单元是高温和超高温气冷堆的重要组成部分。本文对高温和超高温气冷堆的动力转换单元进行研究。从4个关键参数(反应堆出口温度、反应堆入口温度、压缩比和主蒸汽参数)入手,对5个循环方案进行比较分析。综合考虑各种工程因素,上位循环为简单氦气透平循环、下位循环为有再热的蒸汽轮机循环的联合循环方案是具有竞争力的,其中下位循环在高温气冷堆范围是亚临界参数循环,在超高温气冷堆范围是超临界参数循环。联合循环可实现高温和超高温气冷堆热量的高效率转化,且反应堆入口温度在反应堆压力壳材料允许的范围内,具有足够的安全性。

     

    Abstract: Power conversion unit is an important part of high and very high temperature gas-cooled reactors (HTGR and VHTR). The power conversion unit coupled with either HTGR or VHTR was studied in this paper. Based on four key parameters (reactor outlet temperature, reactor inlet temperature, compressor pressure ratio and main steam parameters), five cycle strategies were compared. Considering several engineering limits, the combined cycle with topping closed Brayton cycle and bottoming reheat Rankine cycle is more competitive. Its bottoming cycle should be subcritical in range of HTGR, and in range of VHTR the bottoming cycle should be supercritical. Combined cycle can efficiently convert heat of HTGR and VHTR, and its reactor inlet temperature is within the allowable range of the material of reactor pressure vessel, which has sufficient safety.

     

  • [1] BAUMER R, BARNERT H, BAUST E, et al. AVR: Experimental high-temperature reactor 21 years of successful operation for a future energy technology[R]. Dusseldorf: Association of German Engineers (VDI), The Society for Energy Technologies, 1990.
    [2] STEWARD K P. Final summary report on the peach bottom end-of-life program[M]. USA: General Atomic Co., 1978.
    [3] QUADE R N, HUNT P S, SCHUETZENDUEBEL W G. The design of the fort St. Vrain steam generators[J]. Nuclear Engineering and Design, 1974, 26(1): 118-134.
    [4] BÄUMER R, KALINOWSKI I, RÖHLER E, et al. Construction and operating experience with the 300 MW THTR nuclear power plant[J]. Nuclear Engineering and Design, 1990, 121: 155-166.
    [5] LOHNERT G H. Technical design features and essential safety-related properties of the HTR module[J]. Nuclear Engineering and Design, 1990, 121(2): 259-275.
    [6] WILLIAMS P M, SILADY F A, DUNN T D, et al. MHTGR development in the United States[J]. Progress in Nuclear Energy, 1994, 28(3): 265-346.
    [7] WU Z, LIN D, ZHONG D. The design features of the HTR-10[J]. Nuclear Engineering and Design, 2002, 218: 25-32.
    [8] KUNITOMI K, NAKAGAWA S, SHINOZAKI M. Passive heat removal by vessel cooling system of HTTR during no forced cooling accidents[J]. Nuclear Engineering and Design, 1996, 166: 179-190.
    [9] ZHANG Zuoyi, WU Zongxin, WANG Dazhong, et al. Current status and technical description of Chinese 2×250 MWth HTR-PM demonstration plant[J]. Nuclear Engineering and Design, 2009, 239: 1212-1219.
    [10] ZHANG Zuoyi, WU Zongxin, SUN Yuliang, et al. Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM[J]. Nuclear Engineering and Design, 2006, 236: 485-490.
    [11] KUMAR K N P, TOURLIDAKIS A, PILIDIS P. Performance review: PBMR closed cycle gas turbine power plant[C]∥In Proceedings of the International Joint Power Generation Conference. USA: [s. n.], 2001.
    [12] BAXI C B, SHENOY A, KOSTIN V I, et al. Evaluation of alternate power conversion unit designs for the GTMHR[J]. Nuclear Engineering and Design, 2008, 238(11): 2995-3001.
    [13] YAN X, KUNITOMI K, NAKATA T, et al. GTHTR300 design and development[J]. Nuclear Engineering and Design, 2003, 222(2): 247-262.
    [14] WANG Jie, HUANG Zhiyong, ZHU Shutang, et al. Design Features of gas turbine power conversion system for HTR-10GT[C]∥2nd International Topical Meeting on High Temperature Reactor Technology. Beijing: [s. n.], 2004.
    [15] HUANG Z, WANG J, LI J. Study on the thermodynamic cycle of HTR-10GT[C]∥2nd International Topical Meeting on High Temperature Reactor Technology. Beijing: [s. n.], 2004.
    [16] MCDONALD C F. Power conversion system considerations for a high efficiency small modular nuclear gas turbine combined cycle power plant concept (NGTCC)[J]. Applied Thermal Engineering, 2014, 73(1): 82-103.
    [17] MCDONALD C F. Power conversion system consideration for an advanced nuclear gas turbine (GT-VHTR) CHHP demonstration plant concept[J]. International Journal of Turbo and Jet Engines, 2010, 27(3): 179-217.
    [18] JEAN-CLAUDE G, GERD B, BERNIE C, et al. ANTARES: the HTR/VHTR project of Framatome ANP[J]. Nuclear Engineering and Design, 2006, 236: 526-533.
    [19] WANG J, DING M, YANG X, et al. Performance comparison and optimization of two configurations of (very) high temperature gas-cooled reactors combined cycles[J]. Annals of Nuclear Energy, 2016, 94: 279-287.
    [20] QU X, YANG X, WANG J. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor[J]. Annals of Nuclear Energy, 2017, 106: 185-194.
    [21] 曲新鹤,杨小勇,王捷. 商用高温气冷堆氦气透平循环发电热力学参数分析和优化[J]. 清华大学学报:自然科学版,2017,57(10):1114-1120.QU Xinhe, YANG Xiaoyong, WANG Jie. Thermodynamic analysis and optimization of helium turbine cycle of commercial high temperature gas-cooled reactor[J]. Journal of Tsinghua University: Science and Technology, 2017, 57(10): 1114-1120(in Chinese).
    [22] 佐藤豪. 燃气轮机理论[M]. 王仁,译. 北京:机械工业出版社,1983.
    [23] KIM M H, LEE W J. Survey on cooled-vessel designs in high temperature gas-cooled reactors[C]∥Transactions of the Korean Nuclear Society Autumn Meeting. Korea: [s. n.], 2006.
    [24] 曲新鹤,杨小勇,王捷. 商用高温气冷堆联合循环方案研究[J]. 原子能科学技术,2017,51(9):1578-1584.QU Xinhe, YANG Xiaoyong, WANG Jie. Study on combined cycle plan of commercial high temperature gas-cooled reactor[J]. Atomic Energy Science and Technology, 2017, 51(9): 1578-1584(in Chinese).
    [25] QU X, YANG X, WANG J, et al. Combined cycle schemes coupled with a very high temperature gas-cooled reactor[J]. Progress in Nuclear Energy, 2018, 108: 1-10.
    [26] 曹玉璋. 航空发动机传热学[M]. 北京:北京航空航天大学出版社,2005.
    [27] NATESAN K, MAJUMDAR S, SHANKAR P S, et al. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel, ANL/EXT-06-45[R]. USA: Argonne National Laboratory, 2007.
计量
  • 文章访问数:  402
  • HTML全文浏览量:  6
  • PDF下载量:  1145
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-11-19

目录

    /

    返回文章
    返回