超级质子-质子对撞机中束流热屏模型的热力学性能分析

Thermodynamic Performance Analysis of Beam Screen in Super Proton-proton Collider

  • 摘要: 束流热屏是高能对撞机的关键部件之一,用于转移管道内同步辐射、镜像电流和电子云引起的热负载,并通过在束流热屏壁面上的排气孔将管道内气体从管道内吸附到真空室壁,保证管道内的真空度。在低温条件下,束流热屏排气孔面积等参数的确定及不同工作温度下束流热屏的真空性能和传热性能优化是束流热屏结构设计的关键问题,也是新一代粒子加速器真空系统设计的难点之一。本文基于ANSYS模拟结果,在确保束流热屏良好传热性能的同时,优化束流热屏的排气孔面积等结构参数,提高束流热屏的排气能力,最终为超级质子质子对撞机粒子束流的运行提供良好的真空环境。

     

    Abstract: Beam screen is one of the key components of high-energy collider. It is used to transfer the heat load caused by synchrotron radiation, image current and electronic cloud in the pipeline, and absorb the gas in the pipeline from the pipeline to the vacuum chamber wall through the pumping hole to ensure the vacuum degree in the pipeline. Under low temperature conditions, the determination of parameters such as the pumping hole area of beam screen and the optimization of vacuum and heat transfer performance of beam screen at different operating temperatures are the key issue in the design of beam screen structure, which is also one of the difficulties in vacuum system design of the new generation particle accelerator. Based on the simulation results of ANSYS, the key parameters of beam screen, such as the pumping hole area, were optimized to improve the pumping capacity of beam screen. In the meantime, the heat transfer performance of beam screen was estimated. Finally, it will provide a good vacuum environment for the operation of super proton-proton collider.

     

/

返回文章
返回