材料与构件深部应力场及缺陷无损探测中子谱仪径向准直器的设计

李映婵, 陈东风, 刘晓龙, 李眉娟, 李玉庆, 韩松柏, 陈星雨, 贺林峰, 孙凯

李映婵, 陈东风, 刘晓龙, 李眉娟, 李玉庆, 韩松柏, 陈星雨, 贺林峰, 孙凯. 材料与构件深部应力场及缺陷无损探测中子谱仪径向准直器的设计[J]. 原子能科学技术, 2019, 53(11): 2295-2301. DOI: 10.7538/yzk.2019.youxian.0068
引用本文: 李映婵, 陈东风, 刘晓龙, 李眉娟, 李玉庆, 韩松柏, 陈星雨, 贺林峰, 孙凯. 材料与构件深部应力场及缺陷无损探测中子谱仪径向准直器的设计[J]. 原子能科学技术, 2019, 53(11): 2295-2301. DOI: 10.7538/yzk.2019.youxian.0068
LI Yingchan, CHEN Dongfeng, LIU Xiaolong, LI Meijuan, LI Yuqing, HAN Songbai, CHEN Xingyu, HE Linfeng, SUN Kai. Design of Radial Collimator of Neutron Diffractometer for Residual Stress and Defect in Material and Component[J]. Atomic Energy Science and Technology, 2019, 53(11): 2295-2301. DOI: 10.7538/yzk.2019.youxian.0068
Citation: LI Yingchan, CHEN Dongfeng, LIU Xiaolong, LI Meijuan, LI Yuqing, HAN Songbai, CHEN Xingyu, HE Linfeng, SUN Kai. Design of Radial Collimator of Neutron Diffractometer for Residual Stress and Defect in Material and Component[J]. Atomic Energy Science and Technology, 2019, 53(11): 2295-2301. DOI: 10.7538/yzk.2019.youxian.0068

材料与构件深部应力场及缺陷无损探测中子谱仪径向准直器的设计

Design of Radial Collimator of Neutron Diffractometer for Residual Stress and Defect in Material and Component

  • 摘要: 为设计材料与构件深部应力场及缺陷无损探测中子谱仪的径向准直器,实现大型工程构件的远距离准确取样,本文分析了径向准直器的实空间和相空间取样原理,介绍了目前径向准直器取样体积的解析与模拟计算方法,并利用0.2 mm尼龙线测试了德国E3残余应力谱仪径向准直器的取样尺寸,基于实验结果确定了采用JRR3解析方法作为径向准直器取样尺寸的计算依据。根据解析计算结果,研究了设计参数对径向准直器取样尺寸和传输效率的影响规律,并按照谱仪的空间几何结构,最终设计了谱仪1、2、3、4、5 mm径向准直器取样系统。

     

    Abstract: The gauge principle of the radial collimator in real space and phase space was analyzed to design the radial collimator of the neutron diffractometer for residual stress and defect in material and component in order to set the gauge volume in large engineering component at far distance. The analytical formulas and simulations were introduced to calculate the gauge volume of the radial collimator. The nylon wire with diameter of 0.2 mm was used to test the gauge volume of the radial collimator at E3 instrument, Germany. According to the experimental result, the JRR3 analytical formula was chosen to design the gauge volume of the radial collimator. The effect of the parameters on gauge volume and transmission efficiency was studied systematically. Finally, the radial collimators with gauge volume were designed in combination of the spatial geometrical layout with the parameters of 1, 2, 3, 4 and 5 mm.

     

  • [1] LIU Xiaolong, LIU Yuntao, HAN Songbai, et al. Design and optimization of the monochromator for the new residual stress diffractometer[J]. Material Science Forum, 2015, 850: 148-152.
    [2] EZEILO A N, WEBSTER G A. Advances in neutron diffraction for engineering residual stress measurements[J]. Textures and Microstructures, 1999, 33: 151-171.
    [3] PRIESMEYER H G, LARSEN J, MEGGERS K. Neutron diffraction for non-destructive straid/stress measurements in industrial devices[J]. Journal of Neutron Research, 1994, 2(1): 31-52.
    [4] 刘晓龙,李眉娟,刘蕴韬,等. 中国先进研究堆中子残余应力谱仪实验软件设计[J]. 原子能科学技术,2016,50(5):915-920.LIU Xiaolong, LI Meijuan, LIU Yuntao, et al. Experimental software design of neutron residual stress diffractometer at China Advanced Research Reactor[J]. Atomic Energy Science and Technology, 2016, 50(5): 915-920(in Chinese).
    [5] LIU Xiaolong, WIMPORY R C, GONG Hai, et al. The determination of residual stress in quenched and cold-compressed 7050 aluminum alloy T-section forgings by the contour method and neutron diffraction[J]. Journal of Materials Engineering and Performance, 2018, 27(11): 6049-6057.
    [6] HUTCHINGS M T, WITHERS P J, HOLDEN T M, et al. Introduction to the characterization of residual stress by neutron diffraction[M]. 1st ed. London: Taylor and Francis, 2005.
    [7] WEBSTER G A. ISO/TTA3 Polycrystalline materials: Determinations of residual stresses by neutron diffraction[S]. Geneva: Technology Trends Assessment, 2001.
    [8] WEBSTER P J, MILLS G, WANG X D, et al. Impediments to efficient through-surface strain scanning[J]. Journal of Neutron Research, 1996, 3: 223-240.
    [9] LORENTZEN T. Numerical analysis of instrumental resolution effects on strain measurements by diffraction near surface and interface[J]. Journal of Neutron Research, 1997, 5: 167-180.
    [10] SANTISTEBAN J R, DAYMOND M R, JAMES J A, et al. ENGIN-Ⅹ: A third-generation neutron strain scanner[J]. Journal of Applied Crystallography, 2006, 39: 812-825.
    [11] TORII S, MORIAI A. The design of the radial collimator for residual stress analysis diffractometer of J-PARC[J]. Physica B, 2006, 385-386: 1287-1289.
    [12] WITHERS P J, JOHNSON M W, WRIGHT J S. Neutron strain scanning using a radially collimated diffracted beam[J]. Physica B, 2000, 292: 273-285.
    [13] WANG D Q, WANG X L, ROBERTSON J L, et al. Modeling radial collimators for use in stress and texture measurements with neutron diffraction[J]. Journal of Applied Crystallography, 2000, 33: 334-337.
    [14] ŠAROUN J, KULDA J. Modern developments in X-ray and neutron optics[M]. Berlin: Springer, 2008.
    [15] ŠAROUN J, KULDA J. RESTRAX: A program for TAS resolution calculation and scan profile simulation[J]. Physica B, 1997, 234-236: 1102-1104.
    [16] WIMPORY R C, MIKULA P, ŠAROUN J, et al. Efficiency boost of the materials science diffractometer E3 at BENSC: One order of magnitude due to a horizontally and vertically focusing monochromator[J]. Neutron News, 2008, 19: 16-19.
    [17] BRULE A, KIRSTEIN O. Residual stress diffractometer KOWARI at the Australian research reactor OPAL: Status of the project[J]. Physica B, 2006, 385-386: 1040-1042.
计量
  • 文章访问数:  211
  • HTML全文浏览量:  0
  • PDF下载量:  1215
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-11-19

目录

    /

    返回文章
    返回