非线性振动下水平通道内气液两相流动研究

周云龙, 常赫

周云龙, 常赫. 非线性振动下水平通道内气液两相流动研究[J]. 原子能科学技术, 2019, 53(6): 1014-1020. DOI: 10.7538/yzk.2019.youxian.0112
引用本文: 周云龙, 常赫. 非线性振动下水平通道内气液两相流动研究[J]. 原子能科学技术, 2019, 53(6): 1014-1020. DOI: 10.7538/yzk.2019.youxian.0112
ZHOU Yunlong, CHANG He. Study on Gas-liquid Two-phase Flow in Horizontal Channel under Nonlinear Oscillation[J]. Atomic Energy Science and Technology, 2019, 53(6): 1014-1020. DOI: 10.7538/yzk.2019.youxian.0112
Citation: ZHOU Yunlong, CHANG He. Study on Gas-liquid Two-phase Flow in Horizontal Channel under Nonlinear Oscillation[J]. Atomic Energy Science and Technology, 2019, 53(6): 1014-1020. DOI: 10.7538/yzk.2019.youxian.0112

非线性振动下水平通道内气液两相流动研究

Study on Gas-liquid Two-phase Flow in Horizontal Channel under Nonlinear Oscillation

  • 摘要: 在地震等行为产生的非线性振动下,两相流体会影响回路传热并对装置结构进行冲击,因此对气液界面行为的把握对核安全具有十分重要的意义。本文通过将振动装置与两相流实验回路相结合的方法,对非线性振动下水平通道内气液两相流问题进行了实验研究。基于FLUENT平台,结合动网格模型及UDF编程手段建立了数学模型,并对数学模型进行验证。研究结果表明:模拟结果与实验结果具有很好的一致性;振动工况下气液两相流动形式不同于稳态工况,会出现更复杂的气液界面,主要流型有泡状流、弹状流、搅拌流、波状流及环状流;瞬时摩擦压降的波动幅度随振动幅度和频率的增大而增大,且与振动幅度相比,振动频率对其影响更大。

     

    Abstract: Under nonlinear oscillation caused by seism, two-phase flow will affect loop heat transfer and impact reactor structure, so it is meaningful to study the gas-liquid interface behavior under seismic nonlinear oscillation. According to the method of combining vibration apparatus with two-phase flow experiment loop, the experimental study on gas-liquid two-phase flow in horizontal channel under nonlinear oscillation was conducted. At the same time, based on FLUENT platform, combined with dynamic mesh technique and UDF programming method, the mathematical model was established and verified. The results show that the simulation and experiment results are in reasonable agreement. The flow patterns of gas-liquid two-phase flow under nonlinear oscillation are different from those under steady condition, resulting in more complex gas-liquid interface, and main flow patterns are bead flow, fluctuant slug flow, boiling wave flow, wave flow and annular flow. As vibration intensifying, the magnitude of frictional pressure drop increases, showing vibration frequency has a stronger effect on fluctuation than vibration amplitude.

     

  • [1] TIAN W S, CAO X X, YAN C Q. Experimental study of single-phase natural circulation heat transfer in a narrow, vertical, rectangular channel under rolling motion conditions[J]. International Journal of Heat and Mass Transfer, 2017, 107(5): 592-606.
    [2] 刘赵淼,刘佳. 不同重力下90°弯管内气液两相流行及流动特性研究[J]. 力学学报,2015,47(2):223-230.LIU Zhaomiao, LIU Jia. Study on flow pattern and flow characteristics of gas-liquid two-phase flow in 90 degree bend under different grativity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 223-230(in Chinese).
    [3] 陈冲,高濮珍. 摇摆工况下窄矩形通道内两相沸腾摩擦压降特性[J]. 化工学报,2015,66(10):3874-3880.CHEN Chong, GAO Puzhen. Frictional pressure drop characteristics of two phase boiling in narrow rectangular channel under swing condition[J]. Journal of Chemical Industry and Engineering, 2015, 66(10): 3874-3880(in Chinese).
    [4] 肖秀,朱庆子,王冠轶. 振动工况下环管内气液两相流参数分布实验研究[J]. 原子能科学技术,2017,51(1):19-25.XIAO Xiu, ZHU Qingzi, WANG Guanyi. Experiment investigation on two-phase flow parameter distribution in annular channel under vibration condition[J]. Atomic Energy Science and Technology, 2017, 51(1): 19-25(in Chinese).
    [5] 马晓旭,田茂诚,张冠敏. 水平管内气液两相流诱导振动的数值模拟[J]. 振动与冲击,2016,35(16):204-210.MA Xiaoxu, TIAN Maocheng, ZHANG Guanmin. Numerical investigation on gas-liquid two-phase flow-induced vibration in a horizontal tube[J]. Journal of Vibration and Shock, 2016, 35(16): 204-210(in Chinese).
    [6] YU J C, LI Z X, ZHAO T S. An analytical study of laminar heat convection in a circular pipe with constant heat flux[J]. International Journal of Heat Mass Transfer, 2004, 47(7): 5297-5301.
    [7] WATANABE T. On the numerical approach for simulating reactor thermal hydraulics under seismic conditions[J]. Annals of Nuclear Energy, 2012, 49: 200-206.
    [8] 覃柏英,林贤坤,荣吉利. 气液两相流稳态的高精度数值模拟[J]. 振动与冲击,2016,35(9):79-85.QIN Boying, LIN Xiankun, RONG Jili. High precision numerical simulation for gas-liquid two-phase flow[J]. Journal of Vibration and Shock, 2016, 35(9): 79-85(in Chinese).
    [9] 周云龙,李珊珊. 起伏振动状态下倾斜管气液两相流型实验研究[J]. 原子能科学技术,2018,52(2):262-268.ZHOU Yunlong, LI Shanshan. Experiment investigation on gas-liquid two-phase flow pattern in inclined pipe under fluctuant vibration condition[J]. Atomic Energy Science and Technology, 2018, 52(2): 262-268(in Chinese).
    [10] 周云龙,常赫. 壁面性质对蛇形微通道流动特性的影响[J]. 原子能科学技术,2017,51(1):27-32. ZHOU Yunlong, CHANG He. Numerical simulation on flow pattern of gas-liquid two-phase flow in serpentine micro-channel[J]. Atomic Energy Science and Technology,2017, 51(1): 27-32(in Chinese).
    [11] 曾允庆,蔡杰进. 非线性振动下两相自由液面行为模拟[C]∥中国核科学技术进展报告. 北京:原子能出版社,2013.
    [12] RUSCHE H. Computational fluid dynamics of dispersed two-phase flows at high phase fractions[D]. London: Imperial College of London, 2002.
    [13] ZHOU Y L, CHANG H, QI T Y. Gas-liquid two-phase flow in serpentine microchannel with different wall wettability[J]. Chinese Journal of Chemical Engineering, 2017, 25(7): 874-881.
    [14] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100: 335-354.
    [15] LIM Y S, YU S C M. Numerical simulations of heat transfer characteristics of gas-liquid two-phase flow in microtubes[J]. International Journal of Heat Mass Transfer, 2014, 86: 115-124.
    [16] 周云龙,常赫. 小曲率蛇形微通道弯头处弹状流流动及传质特性的数值研究[J]. 化工学报,2017,68(1):97-103.ZHOU Yunlong, CHANG He. Numerical simulation of gas-liquid flow and mass transfer in curve part of serpentine microchannel with small curvature[J]. CIESC Journal, 2017, 68(1): 97-103(in Chinese).
    [17] 周云龙,赵盘,杨宁. 振动状态下水平管内气液两相流流型转变的实验研究[J]. 热能动力工程,2017,32(6):17-22.ZHOU Yunlong, ZHAO Pan, YANG Ning. Experimental study on flow pattern transition of gas liquid two-phase in horizontal tubes under vibration condition[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(6): 17-22(in Chinese).
计量
  • 文章访问数:  355
  • HTML全文浏览量:  0
  • PDF下载量:  1101
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-06-19

目录

    /

    返回文章
    返回