球团流与球流在球床内的混合卸料特性研究

葛良, 桂南, 杨星团, 屠基元, 姜胜耀

葛良, 桂南, 杨星团, 屠基元, 姜胜耀. 球团流与球流在球床内的混合卸料特性研究[J]. 原子能科学技术, 2020, 54(2): 235-241. DOI: 10.7538/yzk.2019.youxian.0175
引用本文: 葛良, 桂南, 杨星团, 屠基元, 姜胜耀. 球团流与球流在球床内的混合卸料特性研究[J]. 原子能科学技术, 2020, 54(2): 235-241. DOI: 10.7538/yzk.2019.youxian.0175
GE Liang, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Binary Mixture Discharging Characteristics of Pebble Cluster Flow and Pebble Flow in Pebble Bed[J]. Atomic Energy Science and Technology, 2020, 54(2): 235-241. DOI: 10.7538/yzk.2019.youxian.0175
Citation: GE Liang, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Binary Mixture Discharging Characteristics of Pebble Cluster Flow and Pebble Flow in Pebble Bed[J]. Atomic Energy Science and Technology, 2020, 54(2): 235-241. DOI: 10.7538/yzk.2019.youxian.0175

球团流与球流在球床内的混合卸料特性研究

Binary Mixture Discharging Characteristics of Pebble Cluster Flow and Pebble Flow in Pebble Bed

  • 摘要: 为更好地了解球床中球团与单球的双组分体系的流动特性,本文采用离散单元法模拟分析了球床中球团与单球二元混合颗粒材料的卸料特性。球团由3个粘接的单球通过刚性bond组合而成,形成60°、90°、120°和180°夹角。不同数量占比的球团和单球从球床底部的卸料口混合卸出,定量分析了球团组合夹角和球团数量占比对球床双组分混合球流流动特性的影响。研究结果表明,球团的存在会降低卸料速率,定量分析该降低程度与球团的粘接夹角及球团数量占比的关系后,发现卸料速率与二者均存在一定负相关性,即卸料速率随球团夹角及球团数量占比的增加而减小。

     

    Abstract: In order to better understand the flow features of binary mixtures in pebble bed which is composed of pebble clusters and pebbles, discharging characteristics of the binary mixture material of pebble cluster and pebbles were simulated by DEM. The pebble cluster was composed of three particles connected by rigid bonds, forming angles of 60°, 90°, 120° and 180° and being discharged from the discharging hole at the bottom of pebble bed with different number fractions. The discharging characteristics of pebble clusters and pebbles of different number fractions and included angles were quantified. The results show that the existence of pebble clusters can reduce the discharging rate, and the degree of reduction is negatively correlated with the increase of the included angles and the number fraction of pebble clusters. When the included angle and the number fraction of pebble clusters increase, the discharging rate reduces.

     

  • [1] KADAK A C, BERTE M V. Advanced modularity design for the MIT pebble bed reactor[J]. Nucl Eng Des, 2006, 236(5-6): 502-509.
    [2] Pebble Bed Modular Reactor Limited. PBMR safety analysis report, 001929-207/4, Rev. B[R]. South Africa: PBMR, 1999.
    [3] YANG X T, HU W P, JIANG S Y. Experimental investigation on feasibility of two-region designed pebble-bed high-temperature gas-cooled reactor[J]. J Nucl Sci Technol, 2009, 46(4): 374-381.
    [4] JIANG S Y, YANG X T, TANG Z W, et al. Experimental and numerical validation of two region designed pebble bed reactor with dynamic core[J]. Nucl Eng Des, 2012, 246: 277-285.
    [5] THORNTON C. On the relationship between the modulus of particulate media and surface energy of the constituent particles[J]. J Phys D: Appl Phys, 1993, 26(10): 1587-1591.
    [6] CHOI J, KUDROLLI A, ROSALES R R, et al. Diffusion and mixing in gravity-driven dense granular flows[J]. Phys Rev Lett, 2004, 92(17): 174301.
    [7] 杨星团,刘志勇,胡文平,等. HTR_10堆芯球流运动的唯象学DEM模拟[J]. 原子能科学技术,2013,47(12):2231-2237.YANG Xingtuan, LIU Zhiyong, HU Wenping, et al. DEM simulation of pebble flow in HTR-10 core by phenomenological method[J]. Atomic Energy Science and Technology, 2013, 47(12): 2231-2237(in Chinese).
    [8] COETZEE C. Calibration of the discrete element method and the effect of particle shape[J]. Powder Technology, 2016, 297: 50-70.
    [9] HHNER D, WIRTZ S, SCHERER V. A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method[J]. Powder Technology, 2015, 278: 286-305.
    [10] TSUJI Y, TANAKA T, ISHIDA T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3): 239-250.
    [11] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29: 47-65.
    [12] CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock system[C]∥Proceedings of the International Symposium of the International Society for Rock Mechanics. Nancy, France: International Society for Rock Mechanics, 1971.
    [13] WU H, GUI N, YANG X T, et al. Effects of particle size and region width on the mixing and dispersion of pebbles in two region pebble bed[J]. Granular Matter, 2016, 18(4): 76.
    [14] JIA X L, GUI N, YANG X T, et al. Experimental study and analysis of velocity correlation and intermittency of very slow and dense pebble flow in a silo bed[J]. Nucl Eng Des, 2016, 305: 626-638.
    [15] LI Y, GUI N, YANG X T, et al. Effect of friction on pebble flow pattern in pebble bed reactor[J]. Ann Nucl Energy, 2016, 94: 32-43.
    [16] GRAVISH N, FRANKLIN S V, HU D L, et al. Entangled granular media[J]. Phys Rev Lett, 2012, 108(20): 208001.
    [17] TO K, LAI P Y, PAK H K. Flow and jam of granular particles in a two-dimensional hopper[J]. Physica A, 2002, 315: 174-180.
计量
  • 文章访问数:  302
  • HTML全文浏览量:  0
  • PDF下载量:  1054
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回