[1] |
TAJIMA T, DAWSON J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43: 267-270.
|
[2] |
CHEN P, DAWSON J M, HUFF R W, et al. Acceleration of electrons by the interaction of a bunched electron beam with a plasma[J]. Physical Review Letters, 1985, 54: 693-696.
|
[3] |
CALDWELL A, LOTOV K, PUKHOV A, et al. Proton-driven plasma-wakefield acceleration[J]. Nature Physics, 2009, 5: 363-367.
|
[4] |
ESAREY E, SCHROEDER C B, LEEMANS W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81: 1229-1285.
|
[5] |
STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56: 219-221.
|
[6] |
MOUROU G A, TAJIMA T, BULANOV S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78: 309-371.
|
[7] |
LEEMANS W P, NAGLER B, GONSALVES A J, et al. GeV electron beams from a centimeter-scale accelerator[J]. Nature Physics, 2006, 2: 696-699.
|
[8] |
WANG X, ZGADZAJ R, FAZEL N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4: 1988.
|
[9] |
KIM H T, PAE K H, CHA H J, et al. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses[J]. Physical Review Letters, 2013, 111: 165002.
|
[10] |
LEEMANS W P, GONSALVES A J, MAO H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113: 245002.
|
[11] |
GONSALVES A J, NAKAMURA K, DANIELS J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 2019, 122: 084801.
|
[12] |
MANGLES S P D, MURPHY C D, NAJMUDIN Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431: 535-538.
|
[13] |
GEDDES C G R, TOTH C, van TILBORG J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431: 538-541.
|
[14] |
FAURE J, GLINEC Y, PUKHOV A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431: 541-544.
|
[15] |
FAURE J, RECHATIN C, NORLIN A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444: 737-739.
|
[16] |
OSTERHOFF J, POPP A, MAJOR Z, et al. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell[J]. Physical Review Letters, 2008, 101: 085002.
|
[17] |
GEDDES C G R, NAKAMURA K, PLATEAU G R, et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches[J]. Physical Review Letters, 2008, 100: 215004.
|
[18] |
SCHMID K, BUCK A, SEARS C M S, et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13: 091301.
|
[19] |
BUCK A, WENZ J, XU J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110: 185006.
|
[20] |
LI D Z, YAN W C, CHEN M, et al. Generation of quasi-monoenergetic electron beams with small normalized divergences angle from a 2 TW laser facility[J]. Optics Express, 2014, 22: 12836-12844.
|
[21] |
GUILLAUME E, DOEPP A, THAURY C, et al. Electron rephasing in a laser-wakefield accelerator[J]. Physical Review Letters, 2015, 115: 155002.
|
[22] |
WANG W T, LI W T, LIU J S, et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Physical Review Letters, 2016, 117: 124801.
|
[23] |
LI Y F, LI D Z, HUANG K, et al. Generation of 20 kA electron beam from a laser wakefield accelerator[J]. Physics of Plasmas, 2017, 24: 023108.
|
[24] |
COUPERUS J P, PAUSCH R, KOEHLER A, et al. Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator[J]. Nature Communications, 2017, 8(1): 487.
|
[25] |
STEINKE S, van TILBORG J, BENEDETTI C, et al. Multistage coupling of independent laser-plasma accelerators[J]. Nature, 2016, 530: 190-193.
|
[26] |
PAK A, MARSH K A, MARTINS S F, et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes[J]. Physical Review Letters, 2010, 104: 025003.
|
[27] |
MCGUFFEY C, THOMAS A G R, SCHUMAKER W, et al. Ionization induced trapping in a laser wakefield accelerator[J]. Physical Review Letters, 2010, 104: 025004.
|
[28] |
VARGAS M, SCHUMAKER W, HE Z H, et al. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets[J]. Applied Physics Letters, 2014, 104: 174103.
|
[29] |
CLAYTON C E, RALPH J E, ALBERT F, et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 2010, 105: 105003.
|
[30] |
LIU J S, XIA C Q, WANG W T, et al. All optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 2011, 107: 035001.
|
[31] |
POLLOCK B B, CLAYTON C E, RALPH J E, et al. Demonstration of a narrow energy spread, similar to 0.5 GeV electron beam from a two-stage laser wakefield accelerator[J]. Physical Review Letters, 2011, 107: 045001.
|
[32] |
THAURY C, GUILLAUME E, LIFSCHITZ A, et al. Shock assisted ionization injection in laser plasma accelerators[J]. Scientific Reports, 2015, 5: 16310.
|
[33] |
LI F, HUA J F, XU X L, et al. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator[J]. Physical Review Letters, 2013, 111: 015003.
|
[34] |
YU L L, ESAREY E, SCHROEDER C B, et al. Two-color laser-ionization injection[J]. Physical Review Letters, 2013, 112: 125001.
|
[35] |
ZENG M, CHEN M, YU L L, et al. Multichromatic narrow-energy-spread electron bunches from laser-wakefield acceleration with dual-color lasers[J]. Physical Review Letters, 2015, 114: 084801.
|
[36] |
MO M Z, ALI A, FOURMAUX S, et al. Quasimonoenergetic electron beams from laser wakefield acceleration in pure nitrogen[J]. Applied Physics Letters, 2012, 100: 074101.
|
[37] |
KAMPERIDIS C, DIMITRIOU V, MANGLES S P D, et al. Low energy spread electron beams from ionization injection in a weakly relativistic laser wakefield accelerator[J]. Plasma Physics and Controlled Fusion, 2014, 56: 084007.
|
[38] |
HUANG K, LI D Z, YAN W C, et al. Simultaneous generation of quasi-monoenergetic electron and betatron X-rays from nitrogen gas via ionization injection[J]. Applied Physics Letters, 2014, 105: 204101.
|
[39] |
WANG Jinguang, FENG Jie, ZHU Changqing, et al. Small energy spread electron beams from laser wakefield acceleration by self-evolved ionization injection[J]. Plasma Physics and Controlled Fusion, 2017, 60: 034004.
|
[40] |
CHEN M, ESAREY E, SCHROEDER C B, et al. Theory of ionization-induced trapping in laser-plasma accelerators[J]. Physics of Plasmas, 2012, 19: 033101.
|
[41] |
WU Y C, ZHU B, DONG K G, et al. Note: Absolute calibration of two DRZ phosphor screens using ultrashort electron bunch[J]. Review of Scientific Instruments, 2012, 83: 026101.
|
[42] |
NAKANII N, KONDO K, YABUUCHI T, et al. Absolute calibration of imaging plate for GeV electrons[J]. Review of Scientific Instruments, 2008, 79: 066102.
|
[43] |
MANGLES S P D. An overview of recent progress in laser wakefield acceleration experiments[C]∥Proceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration. Geneva, Switzerland: CERN, 2016.
|
[44] |
LU W, TZOUFRAS M, JOSHI C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics: Accelerators and Beams, 2007, 10: 061301.
|
[45] |
ZHU Changqing, WANG Jinguang, FENG Jie, et al. Inverse Compton scattering X-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses[J]. Plasma Physics and Controlled Fusion, 2019, 61: 024001.
|
[46] |
ZHU Changqing, WANG Jinguang, FENG Jie, et al. Steering of asymmetric laser-wakefield accelerated electrons with group delay dispersion[J]. Applied Physics Letters (in press).
|