15 TW激光与氮气作用产生稳定电子束的实验研究

李毅飞, 李大章, 王进光, 朱常青, 冯杰, 何雨航, 陈黎明

李毅飞, 李大章, 王进光, 朱常青, 冯杰, 何雨航, 陈黎明. 15 TW激光与氮气作用产生稳定电子束的实验研究[J]. 原子能科学技术, 2019, 53(9): 1621-1628. DOI: 10.7538/yzk.2019.youxian.0203
引用本文: 李毅飞, 李大章, 王进光, 朱常青, 冯杰, 何雨航, 陈黎明. 15 TW激光与氮气作用产生稳定电子束的实验研究[J]. 原子能科学技术, 2019, 53(9): 1621-1628. DOI: 10.7538/yzk.2019.youxian.0203
LI Yifei, LI Dazhang, WANG Jinguang, ZHU Changqing, FENG Jie, HE Yuhang, CHEN Liming. Experimental Study on Stable Electron Beam Generation from 15 TW Laser Interacting with Nitrogen[J]. Atomic Energy Science and Technology, 2019, 53(9): 1621-1628. DOI: 10.7538/yzk.2019.youxian.0203
Citation: LI Yifei, LI Dazhang, WANG Jinguang, ZHU Changqing, FENG Jie, HE Yuhang, CHEN Liming. Experimental Study on Stable Electron Beam Generation from 15 TW Laser Interacting with Nitrogen[J]. Atomic Energy Science and Technology, 2019, 53(9): 1621-1628. DOI: 10.7538/yzk.2019.youxian.0203

15 TW激光与氮气作用产生稳定电子束的实验研究

Experimental Study on Stable Electron Beam Generation from 15 TW Laser Interacting with Nitrogen

  • 摘要: 利用15 TW激光脉冲,系统研究了基于电离化注入的激光尾波场加速。实验中,研究了等离子体密度、相互作用位置、激光脉宽以及激光能量对电子束的电荷量、发散角、指向性、能量以及产生概率的影响。将约400 mJ、25 fs的激光脉冲聚焦在喷嘴前沿,等离子体密度约9×1018 cm-3时,电子的产生概率高达100%,获得了水平(竖直)发散角(6.5±0.5) mrad((5.3±0.3) mrad)、水平(竖直)指向稳定性±1.2 mrad (±0.7 mrad)、峰值能量(135±8) MeV和电荷量(13.5±2.0) pC(>50 MeV)的稳定电子束,为其应用奠定了基础。

     

    Abstract: The 15 TW laser pulses were used to systematically study laser wakefield acceleration based on ionization injection. In the experiments, the influence of plasma density, interaction position, laser pulse duration and laser energy on the charge, divergence, pointing stability, energy and generation probability of electron beams was studied. When laser pulses with about 400 mJ and 25 fs are focused on the nozzle’s front and plasma density is about 9×1018 cm-3, the generation probability of electron beams is as high as 100%. And, stable electron beams with horizontal (vertical) divergence of (6.5±0.5) mrad ((5.3±0.3) mrad), horizontal (vertical) pointing stability of ±1.2 mrad (±0.7 mrad), peak energy of (135±8) MeV and charge of (13.5± 2.0) pC (>50 MeV) are obtained, paving a solid foundation for its application.

     

  • [1] TAJIMA T, DAWSON J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43: 267-270.
    [2] CHEN P, DAWSON J M, HUFF R W, et al. Acceleration of electrons by the interaction of a bunched electron beam with a plasma[J]. Physical Review Letters, 1985, 54: 693-696.
    [3] CALDWELL A, LOTOV K, PUKHOV A, et al. Proton-driven plasma-wakefield acceleration[J]. Nature Physics, 2009, 5: 363-367.
    [4] ESAREY E, SCHROEDER C B, LEEMANS W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81: 1229-1285.
    [5] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56: 219-221.
    [6] MOUROU G A, TAJIMA T, BULANOV S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78: 309-371.
    [7] LEEMANS W P, NAGLER B, GONSALVES A J, et al. GeV electron beams from a centimeter-scale accelerator[J]. Nature Physics, 2006, 2: 696-699.
    [8] WANG X, ZGADZAJ R, FAZEL N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4: 1988.
    [9] KIM H T, PAE K H, CHA H J, et al. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses[J]. Physical Review Letters, 2013, 111: 165002.
    [10] LEEMANS W P, GONSALVES A J, MAO H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113: 245002.
    [11] GONSALVES A J, NAKAMURA K, DANIELS J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 2019, 122: 084801.
    [12] MANGLES S P D, MURPHY C D, NAJMUDIN Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431: 535-538.
    [13] GEDDES C G R, TOTH C, van TILBORG J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431: 538-541.
    [14] FAURE J, GLINEC Y, PUKHOV A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431: 541-544.
    [15] FAURE J, RECHATIN C, NORLIN A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444: 737-739.
    [16] OSTERHOFF J, POPP A, MAJOR Z, et al. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell[J]. Physical Review Letters, 2008, 101: 085002.
    [17] GEDDES C G R, NAKAMURA K, PLATEAU G R, et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches[J]. Physical Review Letters, 2008, 100: 215004.
    [18] SCHMID K, BUCK A, SEARS C M S, et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13: 091301.
    [19] BUCK A, WENZ J, XU J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110: 185006.
    [20] LI D Z, YAN W C, CHEN M, et al. Generation of quasi-monoenergetic electron beams with small normalized divergences angle from a 2 TW laser facility[J]. Optics Express, 2014, 22: 12836-12844.
    [21] GUILLAUME E, DOEPP A, THAURY C, et al. Electron rephasing in a laser-wakefield accelerator[J]. Physical Review Letters, 2015, 115: 155002.
    [22] WANG W T, LI W T, LIU J S, et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Physical Review Letters, 2016, 117: 124801.
    [23] LI Y F, LI D Z, HUANG K, et al. Generation of 20 kA electron beam from a laser wakefield accelerator[J]. Physics of Plasmas, 2017, 24: 023108.
    [24] COUPERUS J P, PAUSCH R, KOEHLER A, et al. Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator[J]. Nature Communications, 2017, 8(1): 487.
    [25] STEINKE S, van TILBORG J, BENEDETTI C, et al. Multistage coupling of independent laser-plasma accelerators[J]. Nature, 2016, 530: 190-193.
    [26] PAK A, MARSH K A, MARTINS S F, et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes[J]. Physical Review Letters, 2010, 104: 025003.
    [27] MCGUFFEY C, THOMAS A G R, SCHUMAKER W, et al. Ionization induced trapping in a laser wakefield accelerator[J]. Physical Review Letters, 2010, 104: 025004.
    [28] VARGAS M, SCHUMAKER W, HE Z H, et al. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets[J]. Applied Physics Letters, 2014, 104: 174103.
    [29] CLAYTON C E, RALPH J E, ALBERT F, et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 2010, 105: 105003.
    [30] LIU J S, XIA C Q, WANG W T, et al. All optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 2011, 107: 035001.
    [31] POLLOCK B B, CLAYTON C E, RALPH J E, et al. Demonstration of a narrow energy spread, similar to 0.5 GeV electron beam from a two-stage laser wakefield accelerator[J]. Physical Review Letters, 2011, 107: 045001.
    [32] THAURY C, GUILLAUME E, LIFSCHITZ A, et al. Shock assisted ionization injection in laser plasma accelerators[J]. Scientific Reports, 2015, 5: 16310.
    [33] LI F, HUA J F, XU X L, et al. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator[J]. Physical Review Letters, 2013, 111: 015003.
    [34] YU L L, ESAREY E, SCHROEDER C B, et al. Two-color laser-ionization injection[J]. Physical Review Letters, 2013, 112: 125001.
    [35] ZENG M, CHEN M, YU L L, et al. Multichromatic narrow-energy-spread electron bunches from laser-wakefield acceleration with dual-color lasers[J]. Physical Review Letters, 2015, 114: 084801.
    [36] MO M Z, ALI A, FOURMAUX S, et al. Quasimonoenergetic electron beams from laser wakefield acceleration in pure nitrogen[J]. Applied Physics Letters, 2012, 100: 074101.
    [37] KAMPERIDIS C, DIMITRIOU V, MANGLES S P D, et al. Low energy spread electron beams from ionization injection in a weakly relativistic laser wakefield accelerator[J]. Plasma Physics and Controlled Fusion, 2014, 56: 084007.
    [38] HUANG K, LI D Z, YAN W C, et al. Simultaneous generation of quasi-monoenergetic electron and betatron X-rays from nitrogen gas via ionization injection[J]. Applied Physics Letters, 2014, 105: 204101.
    [39] WANG Jinguang, FENG Jie, ZHU Changqing, et al. Small energy spread electron beams from laser wakefield acceleration by self-evolved ionization injection[J]. Plasma Physics and Controlled Fusion, 2017, 60: 034004.
    [40] CHEN M, ESAREY E, SCHROEDER C B, et al. Theory of ionization-induced trapping in laser-plasma accelerators[J]. Physics of Plasmas, 2012, 19: 033101.
    [41] WU Y C, ZHU B, DONG K G, et al. Note: Absolute calibration of two DRZ phosphor screens using ultrashort electron bunch[J]. Review of Scientific Instruments, 2012, 83: 026101.
    [42] NAKANII N, KONDO K, YABUUCHI T, et al. Absolute calibration of imaging plate for GeV electrons[J]. Review of Scientific Instruments, 2008, 79: 066102.
    [43] MANGLES S P D. An overview of recent progress in laser wakefield acceleration experiments[C]∥Proceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration. Geneva, Switzerland: CERN, 2016.
    [44] LU W, TZOUFRAS M, JOSHI C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics: Accelerators and Beams, 2007, 10: 061301.
    [45] ZHU Changqing, WANG Jinguang, FENG Jie, et al. Inverse Compton scattering X-ray source from laser electron accelerator in pure nitrogen with 15 TW laser pulses[J]. Plasma Physics and Controlled Fusion, 2019, 61: 024001.
    [46] ZHU Changqing, WANG Jinguang, FENG Jie, et al. Steering of asymmetric laser-wakefield accelerated electrons with group delay dispersion[J]. Applied Physics Letters (in press).
计量
  • 文章访问数:  285
  • HTML全文浏览量:  0
  • PDF下载量:  1083
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-09-19

目录

    /

    返回文章
    返回