一种全堆芯精确到每个通道的子通道并行模拟方法

王先梦, 赵民富, 吕玉凤, 蔡银宇, 储根深, 卢旭, 王昭顺, 郭苏萱, 周志锋, 胡长军, 杨文

王先梦, 赵民富, 吕玉凤, 蔡银宇, 储根深, 卢旭, 王昭顺, 郭苏萱, 周志锋, 胡长军, 杨文. 一种全堆芯精确到每个通道的子通道并行模拟方法[J]. 原子能科学技术, 2020, 54(6): 1108-1117. DOI: 10.7538/yzk.2019.youxian.0436
引用本文: 王先梦, 赵民富, 吕玉凤, 蔡银宇, 储根深, 卢旭, 王昭顺, 郭苏萱, 周志锋, 胡长军, 杨文. 一种全堆芯精确到每个通道的子通道并行模拟方法[J]. 原子能科学技术, 2020, 54(6): 1108-1117. DOI: 10.7538/yzk.2019.youxian.0436
WANG Xianmeng, ZHAO Minfu, LYU Yufeng, CAI Yinyu, CHU Genshen, LU Xu, WANG Zhaoshun, GUO Suxuan, ZHOU Zhifeng, HU Changjun, YANG Wen. Parallel Strategy for Full-core and Real-channel-resolved Thermal-hydraulic Subchannel Simulation[J]. Atomic Energy Science and Technology, 2020, 54(6): 1108-1117. DOI: 10.7538/yzk.2019.youxian.0436
Citation: WANG Xianmeng, ZHAO Minfu, LYU Yufeng, CAI Yinyu, CHU Genshen, LU Xu, WANG Zhaoshun, GUO Suxuan, ZHOU Zhifeng, HU Changjun, YANG Wen. Parallel Strategy for Full-core and Real-channel-resolved Thermal-hydraulic Subchannel Simulation[J]. Atomic Energy Science and Technology, 2020, 54(6): 1108-1117. DOI: 10.7538/yzk.2019.youxian.0436

一种全堆芯精确到每个通道的子通道并行模拟方法

Parallel Strategy for Full-core and Real-channel-resolved Thermal-hydraulic Subchannel Simulation

  • 摘要: 为实现全堆芯精确到每个通道的并行子通道模拟,本文提出一种基于子通道的并行任务划分和进程映射方法,可对全堆芯或单个组件进行计算任务划分,计算任务和进程的映射可灵活进行。该方法可根据计算机(群)的核数确定恰当的全堆芯子通道的任务划分方式,从而使全堆芯热工水力模拟可在单机、小型集群到超级计算机等不同环境运行。在天河二号超级计算机上进行全堆芯157组件、精确到每个真实流道、轴向划分为125层的稳态模拟,可使用4~6 280核实现。使用4核时需约22 h,使用6 280核时需470 s。引入混合编程实现方式后,使用6 280核完成模拟需397 s。

     

    Abstract: In order to implement full-core and real-channel-resolved parallel subchannel simulations, a subchannel-based parallel partitioning and mapping method was presented. The method is able to partition either a full-core or a single assembly, and it maps the computation tasks and processes flexibly. The method chooses the appropriate partitioning method according to the core number of the computers/clusters used, which enables the full-core thermal-hydraulic simulation to be carried out on various computing environments ranging from personal computers to supercomputers. A full-core and real-channel-resolved steady simulation, which analyzes 157 assemblies with each subchannel divided into 125 layers axially, is carried out on the Tianhe Ⅱ supercomputer using 4-6 280 cores. The running time is about 22 h using 4 cores and the running time is 470 s using 6 280 cores. By utilizing hybrid parallel computing, the running time on 6 280 cores is reduced to 397 s.

     

  • [1] SALKO R K, SCHMIDT R C, AVRAMOVA M N. Optimization and parallelization of the thermal-hydraulic subchannel code CTF for high-fidelity multi-physics applications[J]. Annals of Nuclear Energy, 2015, 84: 122-130.
    [2] GOSDIN C, AVRAMOVA M. Application of sub-channel modeling to BWR core analysis[J]. Annals of Nuclear Energy, 2018, 115: 294-302.
    [3] YAMAMOTO A, IKENO T. Impact of pin-by-pin thermal-hydraulic feedback modeling on steady-state core characteristics[J]. Nuclear Technology, 2005, 149(2): 175-188.
    [4] DAEUBLER M, TROST N, JIMENEZ J, et al. Static and transient pin-by-pin simulations of a full PWR core with the extended coupled code system DYNSUB[J]. Annals of Nuclear Energy, 2015, 84: 31-44.
    [5] HERRERO J J, AHNERT C, ARAGONÉS J M. 3D whole core fine mesh multigroup diffusion calculations by domain decomposition through alternate dissections[C]∥Proceedings of the Mathematics and Computations and Supercomputing in Nuclear Applications (M&C+SNA’07). [S. l.]: [s. n.], 2007.
    [6] GEEMERT R, GLCK M, RIEDMANN M, et al. Parallelized preconditioned BiCGStab solution of sparse linear system equations in F-COBRA-TF[C]∥International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011). [S. l.]: Latin American Section (LAS)/American Nuclear Society (ANS), 2011.
    [7] OpenMP[DB/OL]. https:∥www.openmp.org/.
    [8] CHAUDRI K S, KIM J, KIM Y. Development and validation of a fast sub-channel code for LWR multi-physics analyses[J]. Nuclear Engineering and Technology, 2019, 51: 1218-1230.
    [9] KOTHE D B. CASL: The consortium for advanced simulation of light water reactors[C/OL]∥ The conference on Computing and Computational Science, Fall Creek Falls, Memphis, TN, October 24-27, 2010. https:∥computing.ornl.gov/workshops/FallCreek10/bios.html#kothe.
    [10] KUCUKBOYACI V, SUNG Y, SALKO R. COBRA-TF parallelization and application to PWR reactor core subchannel DNB analysis[C]∥Proceedings of the ANS MC2015-Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method. [S. l.]: [s. n.], 2015.
    [11] SALKO R K, AVRAMOVA M N, SCHMIDT R C. Suggestions for COBRA-TF parallelization and optimization, CASL-U-2013-0003-000[R]. US: Consortium for Advanced Simulation of Light Water Reactors, 2012.
    [12] SALKO R K, AVRAMOVA M N. COBRA-TF subchannel thermal-hydraulics code (CTF) theory manual, Revision 0, CASL-U-2015-0054[R]. US: Consortium for Advanced Simulation of Light Water Reactors, 2015.
    [13] SALKO R, LANGE T, KUCUKBOYACI V, et al. Development of COBRA-TF for modeling full-core, reactor operating cycles[C]∥Advances in Nuclear Fuel Management V (ANFM 2015). [S. l.]: [s. n.], 2015.
    [14] RAMOS E, ROMAN J E, ABARCA A, et al. Control rod drop transient analysis with the coupled parallel code pCTF-PARCSv2. 7[J]. Annals of Nuclear Energy, 2016, 87: 308-317.
    [15] BALAY S, BUSCHELMAN K, EIJKHOUT V, et al. PETSc users manual, ANL-95/11-Revision 2.1.5[R]. USA: Argonne National Laboratory, 2004.
    [16] 明平洲,潘俊杰,芦韡,等. 全堆芯子通道分析的结构化网格并行算法[J]. 计算机应用,2017,37(z2):35-38.MING Pingzhou, PAN Junjie, LU Wei, et al. Parallel algorithm of sub-channel analysis in structured grid manner[J]. Journal of Computer Applications, 2017, 37(z2): 35-38(in Chinese).
    [17] MING P, CHEN D, WU B, et al. Parallel analysis of linear systems in CORTH and KYLIN2[J]. Journal of Nuclear Engineering and Radiation Science, 2018, 4(3): 031010.
    [18] MISAWA T, YOSHIDA H, AKIMOTO H. Development of design technology on thermal-hydraulic performance in tight-lattice rod bundle, Ⅳ: Large paralleled simulation by the advanced two-fluid model code[J]. Journal of Power and Energy Systems, 2008, 2(1): 262-270.
    [19] TODREAS N E, KAZIMI M S. Nuclear systems volume Ⅰ: Thermal hydraulic fundamentals[M]. US: CRC Press, 2011.
    [20] 单莹,吴建平,王正华. 基于SMP集群的多层次并行编程模型与并行优化技术[J]. 计算机应用研究,2006,23(10):254-256.SHAN Ying, WU Jianping, WANG Zhenghua. Hierarchical parallel programming model and parallelization and optimization techniques based on SMP cluster[J]. Application Research of Computers, 2006, 23(10): 254-256(in Chinese).
    [21] CHOW E, HYSOM D. Assessing performance of hybrid MPI/OpenMP programs on SMP clusters, UCRL-JC-143957[R]. USA: Lawrence Livermore National Laboratory, 2001.
    [22] 白宁,朱元兵,任志豪,等. 子通道分析程序LINDEN 的开发与初步验证[J]. 原子能科学技术,2013,47(增刊):299-301.BAI Ning, ZHU Yuanbing, RENG Zhihao, et al. Development and verification of subchannel analysis code LINDEN[J]. Atomic Energy Science and Technology, 2013, 47(Suppl.): 299-301(in Chinese).
    [23] 梁志滔. 压水堆核电站堆芯子通道分析[D]. 广州:华南理工大学,2011.
    [24] 梁诚胜. 900 MW压水堆堆芯稳态热工分析及一回路系统水锤计算[D]. 郑州:华北水利水电大学,2014.
  • 期刊类型引用(2)

    1. 卢旭,蔡银宇,董玲玉,刘天才,杨文,胡长军. 快堆全堆芯热工流体子通道并行模拟技术研究. 原子能科学技术. 2021(09): 1547-1558 . 本站查看
    2. 吴明宇,朱迎,卢旭,苗雪,吴宗芸,李龙,胡赟,赵民富. 反应堆核-热-燃耗多物理耦合框架研究与应用. 原子能科学技术. 2021(09): 1643-1649 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  358
  • HTML全文浏览量:  1
  • PDF下载量:  1293
  • 被引次数: 5
出版历程
  • 刊出日期:  2020-06-19

目录

    /

    返回文章
    返回