几何结构对快堆控制棒组件管脚流动特性的影响

秦亥琦, 陆道纲, 刘少华, 王雨, 唐甲璇, 钟达文

秦亥琦, 陆道纲, 刘少华, 王雨, 唐甲璇, 钟达文. 几何结构对快堆控制棒组件管脚流动特性的影响[J]. 原子能科学技术, 2020, 54(8): 1361-1370. DOI: 10.7538/yzk.2019.youxian.0494
引用本文: 秦亥琦, 陆道纲, 刘少华, 王雨, 唐甲璇, 钟达文. 几何结构对快堆控制棒组件管脚流动特性的影响[J]. 原子能科学技术, 2020, 54(8): 1361-1370. DOI: 10.7538/yzk.2019.youxian.0494
QIN Haiqi, LU Daogang, LIU Shaohua, WANG Yu, TANG Jiaxuan, ZHONG Dawen. Geometrical Structure Effect on Entry-tube Flow Characteristic of Fast Reactor Control Assembly[J]. Atomic Energy Science and Technology, 2020, 54(8): 1361-1370. DOI: 10.7538/yzk.2019.youxian.0494
Citation: QIN Haiqi, LU Daogang, LIU Shaohua, WANG Yu, TANG Jiaxuan, ZHONG Dawen. Geometrical Structure Effect on Entry-tube Flow Characteristic of Fast Reactor Control Assembly[J]. Atomic Energy Science and Technology, 2020, 54(8): 1361-1370. DOI: 10.7538/yzk.2019.youxian.0494

几何结构对快堆控制棒组件管脚流动特性的影响

Geometrical Structure Effect on Entry-tube Flow Characteristic of Fast Reactor Control Assembly

  • 摘要: 控制棒组件是快堆的重要安全构件,其管脚几何结构对于流动特性具有显著影响。通过水力实验研究了板式节流件管脚的流动特性,并对流体-结构耦合数值模拟方法进行了验证。结果显示:减小节流板厚度、增加连杆直径均可提高管脚节流能力;无量纲厚径比Ha=0.5、连杆直径20 mm的板式节流件管脚具有最优的流动特性。针对板式节流件管脚在实验中存在的缺陷,提出了孔板节流件作为替代方案,经验证,两类管脚速度、压力分布基本一致,该替代方案可行。

     

    Abstract: The control assembly is an important safety component of sodium-cooled fast reactor. The entry-tube geometrical structure has a significant effect on flow characteristics. The flow characteristics of plate-throttle entry-tube were investigated by hydraulic experiment, and the fluid-structure coupling numerical simulation was verified by experiment data. The results show that reducing the thickness of throttle plate and increasing the diameter of connecting rod can effectively improve the entry-tube throttling capacity. Considering the limitation of flow velocity, the dimensionless thickness-diameter ratio of 0.5 and connecting rod diameter of 20 mm are regarded as the optimum structure parameters of entry-tube. Due to the shortage of plate-throttle entry-tube in experiment, an alternative project of square-groove entry-tube was proposed. It is verified that this project is feasible with the similar flow velocity and pressure distribution in two types of entry-tubes.

     

  • [1] 何佳闰,郭正荣. 钠冷快堆发展综述[J]. 东方电气评论,2013,27(107):36-43.HE Jiarun, GUO Zhengrong. Development status of sodium cooled fast reactor[J]. Dongfang Electric Review, 2013, 27(107): 36-43(in Chinese).
    [2] 杨红义,宋维. 第4代核能系统国际论坛(GIF)进展[M/OL]∥中国原子能研究院年报. 北京:原子能出版社,2007.
    [3] Generation-Ⅳ International Forum. A technology roadmap for generation Ⅳ nuclear energy systems, GIF-002-00[R]. [S. l.]: [s. n.], 2002.
    [4] 吴林,杨玉亭. 钠冷快堆非能动悬浮控制棒停堆系统的可行性[C]∥中国核工业中国核电第二届“卓越杯”青年技术与管理创新论文专刊. [出版地不详]:[出版者不详],2016.
    [5] 吴元强. 反应堆控制棒驱动机构[M]. 北京:中国原子能出版社,2015:223-231.
    [6] 宋青,孙磊,杨红义,等.中国实验快堆控制棒驱动机构抗震鉴定试验[J]. 核科学与工程,2008,28(3):218-223.SONG Qing, SUN Lei, YANG Hongyi, et al. Seismic appraisal test of control rod drive mechanism of China Experimental Fast Reactor[J]. Chinese Journal of Nuclear Science and Engineering, 2008, 28(3): 218-223(in Chinese).
    [7] 孙磊,杨红义,陈学德,等. 中国实验快堆控制棒驱动线抗震试验研究[J]. 原子能科学技术,2008,42(增刊):422-425.SUN Lei, YANG Hongyi, CHEN Xuede, et al. Seismic test research of control rod drive line for China Experimental Fast Reactor[J]. Atomic Energy Science and Technology, 2008, 42(Suppl.): 422-425(in Chinese).
    [8] 杨长江,刘天才,刘兴民. 中国先进研究堆控制棒组件三维流场分析[J]. 核动力工程,2003,24(6):25-29.YANG Changjiang, LIU Tiancai, LIU Xingmin. Three-dimensional flow field analysis of the control rod assembly of China Advanced Research Reactor[J]. 2003, 24(6): 25-29(in Chinese).
    [9] 陈仪煜,杨勇,刚直,等. 中国实验快堆安全棒和补偿棒价值理论分析和试验研究[J]. 原子能科学技术,2013,47(增刊):92-94.CHEN Yiyu, YANG Yong, GANG Zhi, et al. Measurement and analysis of CEFR safety and shim rod worth[J]. Atomic Energy Science and Technology, 2013, 47(Suppl.): 92-94(in Chinese).
    [10] 才春博,张强. 中国实验快堆控制棒驱动机构动导管氦产量计算[J]. 产业与科技论坛,2017,16(9):68-69.CAI Chunbo, ZHANG Qiang. Calculation of helium production in moving tube of control rod drive mechanism of China Experimental Fast Reactor[J]. Industrial and Science Tribune, 2017, 16(9): 68-69(in Chinese).
    [11] YOON K H, KIM J Y, LEE K H, et al. Control rod drop analysis by finite element method using fluid-structure interaction for a pressurized water reactor power plate[J]. Nuclear Engineering and Design, 2009, 239: 1857-1861.
    [12] 赵兆颐,朱瑞安. 反应堆热工流体力学[M]. 北京:清华大学出版社,1992:289-290.
    [13] 刘一哲. 快堆单盒燃料组件内冷却剂流场温度场计算研究[D]. 北京:中国原子能科学研究院,2007.
    [14] 孔珑. 工程流体力学[M]. 4版. 北京:中国电力出版社,2014:116-117.
    [15] 秦亥琦,陆道纲,司宇,等. 快堆燃料组件少孔式管脚替代方案水力实验研究[J]. 原子能科学技术,2019,53(7):1288-1295.QIN Haiqi, LU Daogang, SI Yu, et al. Hydraulic experimental investigation on alternative method of few-hole entry tube for fast reactor fuel assembly[J]. Atomic Energy Science and Technology, 2019, 53(7): 1288-1295(in Chinese).
    [16] ANSYS CFX-Solver Theory Guide. ANSYS CFX release 14.0[M]. [S. l.]: [s. n.], 2011.
    [17] 秦亥琦,陆道纲,王嘉瑞,等. 间距对快堆燃料组件迷宫密封结构性能影响的数值模拟[J]. 原子能科学技术,2019,53(4):663-672.QIN Haiqi, LU Daogang, WANG Jiarui, et al. Numerical simulation of effect of spacing on performance of labyrinth-seal structure of fast reactor fuel assembly[J]. Atomic Energy Science and Technology, 2019, 53(4): 663-672(in Chinese).
    [18] 谢龙汉,赵新宇,张炯明. ANSYS CFX流体分析及仿真[M]. 北京:电子工业出版社,2012:185-217.
    [19] ANSYS ICEM CFD tutorial manual 14.0[M]. USA: ANSYS Inc., 2012.
    [20] 陶文铨. 数值传热学[M]. 2版. 西安:西安交通大学出版社,2001:347-352.
计量
  • 文章访问数:  385
  • HTML全文浏览量:  0
  • PDF下载量:  1023
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-08-19

目录

    /

    返回文章
    返回