Ni-MOF-74制备及其对CO的吸附性能
Preparation of Ni-MOF-74 and Its Adsorption Property for CO
-
摘要: 通过水热合成法制备了Ni-MOF-74材料,采用全自动表面积吸附仪、PXRD、扫描电子显微镜、同步热分析仪对材料的孔隙结构、晶体形貌和热稳定性进行了表征,并采用静态吸附法测定了CO、N2、CH4和CO2在Ni-MOF-74上的吸附等温线;采用挤压成型方法制备了Ni-MOF-74成型材料,并研究了挤压成型后Ni-MOF-74晶体结构和微孔结构的变化及对CO的吸附性能的影响。结果表明,制得的Ni-MOF-74材料比表面积达1 212.61 m2/g ,其孔径主要集中在0.8~1.0 nm之间,对CO的吸附量远高于相同条件下对N2和CH4的吸附量,具有良好的热稳定性;Ni-MOF-74对CO的吸附作用力明显高于对N2、CH4和CO2的;挤压成型后Ni-MOF-74的完整晶体数量明显减少,且部分微孔结构遭到破坏,成型后对CO的吸附性能明显下降。Abstract: Ni-MOF-74 materials were prepared by hydrothermal synthesis. The pore structure, crystal morphology and thermal stability of the materials were characterized by full automatic surface area adsorbent apparatus, PXRD, scanning electron microscopy and synchronous thermal analyzer. The adsorption isotherms of CO, N2, CH4 and CO2 on Ni-MOF-74 were determined by static adsorption method. The molding material of Ni-MOF-74 was prepared, and the changes of crystal structure and micro structure and the adsorption property for CO were studied. The results show that the specific surface area of the prepared Ni-MOF-74 material is as high as 1 212.61 m2/g, the pore size is mainly between 0.8-1.0 nm, the adsorption capacity of CO is much higher than that of N2 and CH4 under the same conditions, and it has good thermal stability. The adsorption force of CO by Ni-MOF-74 is significantly higher than that of N2, CH4 and CO2. The number of complete crystals of Ni-MOF-74 in extrusion samples decreases significantly, and some of the microporous structures are destroyed, and the adsorption properties of CO decrease significantly after extrusion.
-
Keywords:
- Ni-MOF-74 ,
- extrusion molding ,
- CO
-
-
[1] ALBUQUERQUE G H, FITZMORRIS R C, AHMADI M, et al. Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures[J]. Crystengcomm, 2015, 17(29): 5505510. [2] CHEN D L, SHANG H, ZHU W D, et al. Transient breakthroughs of CO2/CH4 and C3H6/C3H8 mixtures in fixed beds packed with Ni-MOF-74[J]. Chemical Engineering Science, 2015, 124: 109-117. [3] TAN K, ZULUAGA S, GONG Q H, et al. Competitive coadsorption of CO2 with H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in M-MOF-74 (M=Mg, Co, Ni): The role of hydrogen bonding[J]. Chemistry of Materials, 2015, 27(6): 2203-2217. [4] LIU J, WANG Y, BENIN A I, et al. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC[J]. Langmuir, 2010, 26(17): 14301-14307. [5] VITILLO J G, REGLI L, CHAVAN S, et al. Role of exposed metal sites in hydrogen storage in MOFs[J]. Journal of the American Chemical Society, 2008, 130(26): 8386-8396. [6] BLOCH E D, HUDSON M R, MASON J A, et al. Reversible CO binding enables tunable CO/H2and CO/N2 separations in metal-organic frameworks with exposed divalent metal cations[J]. Journal of the American Chemical Society, 2014, 136(30): 107510761. [7] CHOWDHURY P, MEKALA S, DREISBACH F, et al. Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity[J]. Microporous and Mesoporous Materials, 2012, 152: 246-252. [8] XU X L, ZHAO X X, SUN L B, et al. Adsorption separation of carbon dioxide, methane, and nitrogen on H beta and Na-exchanged beta-zeolite[J]. Journal of Natural Gas Chemistry, 2008, 17(4): 391-396. [9] PETIT C, BURRESS J, BANDOSZ T J. The synthesis and characterization of copper-based metal-organic framework/graphite oxide composites[J]. Carbon, 2011, 49(2): 563-572. [10] WU Xiaofei, BAO Zongbi, YUAN Bin, et al. Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation[J]. Microporous and Mesoporous Materials, 2013, 180: 114-122. [11] LIN K S, ADHIKARI A K, KU C N, et al. Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage[J]. Int J Hydrogen Energy, 2012, 37(18): 13865-13871. [12] UZUN A, KESKIN S. Site characteristics in metal organic frameworks for gas adsorption[J]. Prog Surf Sci, 2014, 89(1): 56-79. [13] PETERSON G W, DECOSTE J B, GLOVER T G, et al. Effects of pelletization pressure on the physical and chemical properties of the metal-organic frameworks Cu3(BTC)2 and UiO-66[J]. Microporous Mesoporous Mater, 2013, 179(13): 48-53. -
期刊类型引用(9)
1. 蒋灶,徐龙君,刘成伦. Ni-MOF/Zn_(0.5)Cd_(0.5)S合成及其光催化废水制氢研究. 燃料化学学报(中英文). 2024(01): 97-104 . 百度学术
2. 陈彬,傅钰,曹天,伍岳,张文祥,韦冠一,武山,马和平. HKUST-1颗粒对低浓度氙氪混合气体动态吸附分离性能的研究. 原子能科学技术. 2024(02): 308-319 . 本站查看
3. 单栋,毛新军,吴齐超,余青结,任佳红. MOFs材料在吸附方面的应用研究综述. 上海染料. 2023(05): 28-31 . 百度学术
4. 陈彬,傅钰,户耀文,张文祥,马燕,伍岳,曹天,陈莉云,武山,马和平. HKUST-1和Co-MOF-74颗粒的稳定性及其分离低浓度氙氪的实验研究. 原子能科学技术. 2023(11): 2170-2181 . 本站查看
5. 邹明鑫,程清蓉,潘志权. 核壳CdS@ZIF-9异质结的合成、光催化性能及机理研究. 武汉工程大学学报. 2023(06): 606-612 . 百度学术
6. 陈九龙,王双,杜晓声. 二维纳米材料改性环氧树脂的研究进展. 材料导报. 2021(17): 17210-17217 . 百度学术
7. 娄杰,付秋平,余磊,严伟,黄伟江,王琪. MOF(Ni)-74对废水中偶氮染料刚果红的吸附性能研究. 化学试剂. 2021(11): 1466-1472 . 百度学术
8. 刘慧君,刘娟,王娜. 基于碱金属钾的β-环糊精金属有机骨架的合成研究. 南华大学学报(自然科学版). 2021(05): 86-91 . 百度学术
9. 毛祖兴,戴宏,李肖敏,周杰. 自支撑Ni-MOF-74材料的形貌调控. 广东化工. 2021(22): 22-23+56 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 369
- HTML全文浏览量: 12
- PDF下载量: 1032
- 被引次数: 11