事故容错燃料安全性能初步分析

杨红发, 巫英伟, 尹莎莎, 刘明皓, 汪宇, 赖建永, 廖先伟, 谢海燕, 王嘉瑞, 欧阳斌

杨红发, 巫英伟, 尹莎莎, 刘明皓, 汪宇, 赖建永, 廖先伟, 谢海燕, 王嘉瑞, 欧阳斌. 事故容错燃料安全性能初步分析[J]. 原子能科学技术, 2020, 54(8): 1441-1447. DOI: 10.7538/yzk.2019.youxian.0563
引用本文: 杨红发, 巫英伟, 尹莎莎, 刘明皓, 汪宇, 赖建永, 廖先伟, 谢海燕, 王嘉瑞, 欧阳斌. 事故容错燃料安全性能初步分析[J]. 原子能科学技术, 2020, 54(8): 1441-1447. DOI: 10.7538/yzk.2019.youxian.0563
YANG Hongfa, WU Yingwei, YIN Shasha, LIU Minghao, WANG Yu, LAI Jianyong, LIAO Xianwei, XIE Haiyan, WANG Jiarui, OUYANG Bin. Preliminary Analysis of Safety Performance for Accident-tolerant Fuel[J]. Atomic Energy Science and Technology, 2020, 54(8): 1441-1447. DOI: 10.7538/yzk.2019.youxian.0563
Citation: YANG Hongfa, WU Yingwei, YIN Shasha, LIU Minghao, WANG Yu, LAI Jianyong, LIAO Xianwei, XIE Haiyan, WANG Jiarui, OUYANG Bin. Preliminary Analysis of Safety Performance for Accident-tolerant Fuel[J]. Atomic Energy Science and Technology, 2020, 54(8): 1441-1447. DOI: 10.7538/yzk.2019.youxian.0563

事故容错燃料安全性能初步分析

Preliminary Analysis of Safety Performance for Accident-tolerant Fuel

  • 摘要: 事故容错燃料(ATF)是通过提高燃料材料热物性或包壳材料抗高温氧化性能来加强核燃料的事故容错能力,从而使核燃料能长期忍受严重事故。使用二次开发适用于ATF的RELAP5程序,对UO2-FeCrAl、FCM-FeCrAl这两种ATF和传统核燃料UO2-Zir-4进行大破口失水事故安全分析。对比事故分析结果可知:相较于传统UO2芯块,稳态运行工况下,热导率高的FCM芯块具有更低的燃料中心温度和更小的燃料径向温度梯度,同时在瞬态事故工况下,FCM芯块具有更低的瞬态初始温度和更小的燃料温度增长速率。相较于传统Zir-4包壳,在瞬态事故工况下,FeCrAl的包壳峰值温度更小,达到的时间更晚,同时由于FeCrAl包壳具有良好的抗高温氧化性能,事故过程中产生的氢气质量更小。

     

    Abstract: Accident-tolerant fuel (ATF) is to enhance the accident-tolerant capacity of nuclear fuel by improving the thermal properties of fuel materials or the high temperature oxidation resistance of cladding materials, so that nuclear fuel can endure serious accidents for a long time. Using RELAP5 program developed for ATF, safety analysis of UO2-FeCrAl, FCM-FeCrAl and conventional nuclear fuel UO2-Zir-4 was carried out. Compared with conventional UO2 pellets, FCM pellets with higher thermal conductivity have lower fuel center temperature and smaller radial fuel temperature gradient under steady state operating conditions. FCM pellets also have lower transient initial temperature and lower fuel temperature growth rate under transient accident condition. Compared with conventional cladding Zir-4, the peak cladding temperature of FeCrAl is smaller and reaches later under transient accident condition. Meanwhile, due to the better high temperature oxidation resistance of FeCrAl cladding, the smaller hydrogen mass production is produced during the accident progress.

     

  • [1] 武小莉,汪洋,张亚培,等. 事故容错燃料在大破口事故下的安全分析[J]. 原子能科学技术,2016,50(6):1065-1071.WU Xiaoli, WANG Yang, ZHANG Yapei, et al. Safety analysis of accident-torelant fuel during LBLOCA[J]. Atomic Energy Sicience and Techology, 2016, 50(6): 1065-1071(in Chinese).
    [2] BROWN N R, LUDEWIG H, ARONSON A, et al. Neutronic evaluation of a PWR with fully ceramic microencapsulated fuel, Part Ⅰ: Lattice benchmarking, cycle length, and reactivity coefficients[J]. Annals of Nuclear Energy, 2013, 62: 538-547.
    [3] TERRANI KA, KIGGANS JO, KATOH Y, et al. Fabrication and characterization of fully ceramic microencapsulated fuels[J]. Journal of Nuclear Materials, 2012, 426: 268-276.
    [4] TERRANI K A, SNEAD L L, GEHIN J C, et al. Microencapsulated fuel technology for commercial light water and advanced reactor application[J]. Journal of Nuclear Materials, 2012, 427: 209-224.
    [5] KATOH Y, SNEAD L L, SZLUFARSKA I, et al. Radiation effects in SiC for nuclear structural applications[J]. Current Opinion in Solid State and Materials Science, 2012, 16: 143-152.
    [6] YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716.
    [7] CIDAS: Thermophysical properties of matter database[DB/OL].http:∥cindasdata.com.
    [8] MUNRO R G, CHEM J P. Material properties of a sintered alpha-SiC[J]. Journal of Physical and Chemical Reference Data, 1997, 26: 1195-1203.
    [9] SCOTT D B. Physical and mechanical properties of zircaloy 2 and 4, WCAP-3269-41[R]. USA: DOE Office for Scientific and Technical Information, 1965.
    [10] PINT B A, YAMAMOTO Y, TERRANI K A, et al. Material selection for accident tolerant fuel cladding[J]. Metallurgical and Materials Transactions E, 2015, 2: 190-196.
    [11] BERARDA P, BARTOUTA J D, REYTIER B M, et al. Behavior of a FeCrAl alloy for high temperature steam electrolysis sealing applications between 1 000 K and 1 200 K[J]. Materials Science and Engineering A, 2011, 528: 4092-4097.
    [12] BRASSFIELD H C, WHITE J F, SJODAHL L, et al. Recommended property and reaction kinetics data for use in evaluating a light water cooled reactor loss of coolant incident involving zircaloy-4 or 304-SS-clad UO2, GCMP-482[R]. USA: General Electric Co., 1968.
    [13] CATHCART J V. Reaction rate studies, Ⅳ, zirconium metal-water oxidation kinetics, ORNL/NUREG-17[R]. USA: Oak Ridge National Laboratory, 1977.
    [14] PARK S Y. A review of MAAP4 code structure and core T/H model, KAERI/TR-1003/98[R]. Korea: Korea Atomic Energy Research Institute, 2017.
    [15] EPRI/FAI. MAAP4 (Modular accident analysis program) user’s manual[R]. France: Electric Power Research Institute, 1994.
    [16] RELAP5/MOD3.3 code manual, Volume Ⅰ: Code structure, system models, and solution methods, NUREG/CR-5535/ Rev 1-Vol Ⅰ[R]. USA: Idaho National Engineering Laboratory, 2001.
  • 期刊类型引用(4)

    1. 张小刚,俞东宝,申俊华,季婧. 弥散燃料芯块中核芯颗粒位置信息的CT检测方法. 无损检测. 2024(01): 61-67 . 百度学术
    2. 熊怡然,马泽华,梁任,林支康,琚忠云,彭振驯. 基于LOCUST程序的事故容错燃料大破口失水事故安全分析. 核动力工程. 2024(S1): 138-144 . 百度学术
    3. 王栋,钟汝浩,张亚培,郭超,徐浩德,余剑,蓝毅聪,苏光辉,秋穗正,田文喜. 磁控溅射铬涂层锆合金包壳高温水蒸气氧化行为. 表面技术. 2023(11): 258-268 . 百度学术
    4. 王博,刘圣搏,王庆宇. ATF包壳FeCrAl合金的析出行为研究. 热加工工艺. 2021(16): 1-7+12 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  926
  • HTML全文浏览量:  2
  • PDF下载量:  1037
  • 被引次数: 6
出版历程
  • 刊出日期:  2020-08-19

目录

    /

    返回文章
    返回