核电站中气溶胶再悬浮的CFD研究

江斌, 黄挺, 陈炼, 常华健

江斌, 黄挺, 陈炼, 常华健. 核电站中气溶胶再悬浮的CFD研究[J]. 原子能科学技术, 2020, 54(5): 790-795. DOI: 10.7538/yzk.2019.youxian.0622
引用本文: 江斌, 黄挺, 陈炼, 常华健. 核电站中气溶胶再悬浮的CFD研究[J]. 原子能科学技术, 2020, 54(5): 790-795. DOI: 10.7538/yzk.2019.youxian.0622
JIANG Bin, HUANG Ting, CHEN Lian, CHANG Huajian. CFD Research on Aerosol Resuspension in Nuclear Power Plant[J]. Atomic Energy Science and Technology, 2020, 54(5): 790-795. DOI: 10.7538/yzk.2019.youxian.0622
Citation: JIANG Bin, HUANG Ting, CHEN Lian, CHANG Huajian. CFD Research on Aerosol Resuspension in Nuclear Power Plant[J]. Atomic Energy Science and Technology, 2020, 54(5): 790-795. DOI: 10.7538/yzk.2019.youxian.0622

核电站中气溶胶再悬浮的CFD研究

CFD Research on Aerosol Resuspension in Nuclear Power Plant

  • 摘要: 利用三维计算流体力学程序GASFLOW分析了气溶胶的再悬浮行为。通过拉格朗日粒子模型计算得出再悬浮率,并将所得结果与集总参数程序ASTEC的计算结果与国际标准例题中的STORM试验台架测试的SR11试验结果进行对比。计算结果表明,GASFLOW程序能较好地模拟气溶胶的再悬浮行为,且相对于集总参数程序而言,能清晰直观地展示不同时刻气溶胶的位置分布,可为压水堆核电站严重事故条件下的气溶胶行为分析提供参考。

     

    Abstract: The aerosol resuspension behavior was simulated by three-dimensional computational fluid dynamics program GASFLOW. The resuspension rate was calculated by Lagrangian particle model and compared with the results obtained from the calculation of the lumped parameter program ASTEC and the test results obtained from STORM series tests-SR11 in the international standard problems. The results show that GASFLOW program can simulate the aerosol resuspension behavior well. Compared with lumped parameter program, GASFLOW program can clearly and intuitively display the aerosol position distribution at different time, which can provide reference for aerosol behavior analysis under severe accident conditions of pressurized water reactor nuclear power plant.

     

  • [1] BUJAN A, TOTH B, ZEYEN R. ASTEC V1.3 code assessment on the STORM aerosols mechanical resuspension tests, EUR 23233 EN[R]. [S. l.]: JRC, 2008.
    [2] TRAVIS J R, JORDAN T, RRYL P, et al. GASFLOW3.3: A computational fluid dynamics code for gases aerosols, and combustion: Volume 2: User’s manual[R]. Germany: KIT, 2012.
    [3] 肖建军,周志伟,经荥清. 核电站安全壳内氢气扩散和燃烧的分析程序GASFLOW及其应用[J]. 核科学与工程,2005,25(4):317-321.
    XIAO Jianjun, ZHOU Zhiwei, JING Xingqing. GASFLOW: CFD code for the distribution and combustion of hydrogen in the containment[J]. Chinese Journal of Nuclear Science and Engineering, 2005, 25(4): 317-321(in Chinese).
    [4] HIRT C W, AMSDEN A A,COOK J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14(3): 227-253.
    [5] ALFREDO R C, JOAQUIM A C, GIOVANNI D S. International standard problem 40 aerosol deposition and resuspension, EUR 18708 EN, NEA/CSNI/R(99)4[R]. [S. l.]: [s. n.], 1999.
    [6] SUGIMOTO J, KAJIMOTO M, HASHIMOTO K, et al. Short overview on the definition and significance of the late phase fission produce aerosol/vapor source, NEA/CSNI/R(94)30[R]. [S. l.]: [s. n.], 1994.
    [7] ZINSKIND G, FICHMAN M, GUTFINGER C. Resuspension of particulates from surfaces to turbulent flows-review and analysis[J]. Journal of Aerosol Science, 1995, 26(4): 613-644.
    [8] TRAVIS J R, ROYL P, XIAO J, et al. GASFLOW3.3: A computational fluid dynamics code for gases aerosols, and combustion, Volume 1: Theory and Computational Model[R]. Germany: KIT, 2011.
    [9] 郭烈锦. 两相与多相流动力学[M]. 西安:西安交通大学出版社,2002.
    [10] BARON D. The influence of flattening on the adhesion of particles[J]. Journal of Colloid and Interface Science, 1972, 40(1): 1-13.
    [11] SAFFMAN P G. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics, 1965, 22: 385-400.
    [12] 车得福,李会雄. 多相流及其应用[M]. 西安:西安交通大学出版社,2007.
    [13] EVETT J B, LIU C. Fundamentals of fluid mechanics[M]. New York: McGrawHill, 1987: 381-390.
    [14] SEHGAL B R. Nuclear safety in light water reactors: Severe accident phenomenology[M]. US: Academic Press, 2012: 457.
计量
  • 文章访问数:  483
  • HTML全文浏览量:  2
  • PDF下载量:  1006
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-05-19

目录

    /

    返回文章
    返回