基于动态模拟计算的低温精馏分离13C同位素丰度分析

Abundance Analysis of 13C Isotope Separation by Cryogenic Rectification Based on Dynamic Simulation

  • 摘要: 低温精馏法分离碳同位素(12CO/13CO)的分离系数仅为1.007,且分离操作工况苛刻,富集平衡时间长,为降低工业化装置运行风险,实现13C同位素富集的动态过程理论预测是工业化技术研究中亟需解决的问题。为此,本文通过采用Aspen Dynamics模拟研究CO低温精馏分离碳同位素的动态过程,获取13C同位素在全回流、浓缩富集、连续精馏操作条件下的丰度分布等值图,实现13C同位素在时间和空间两个维度内丰度变化过程的可视化。将上述操作条件下的动态模拟值与试验值进行对比分析,结果显示,两者吻合较好,且富集平衡时塔底13C丰度和富集平衡时间的相对误差均在15%以下,验证了所建立的低温精馏分离13C同位素动态模拟计算方法的准确性,可进一步用于高丰度13C同位素生产装置中丰度变化过程的理论预测。

     

    Abstract: The carbon isotope (12CO/13CO) separation has a separation coefficient of only 1.007, which has typical characteristics of severe separation conditions and long equilibrium time. In order to reduce the operational risk of industrial devices, the theoretical prediction of the dynamic process of 13C isotope enrichment is an urgent problem to be solved in industrial technology research. Therefore, the dynamic simulation of carbon isotope separation by CO cryogenic rectification was carried out by using Aspen Dynamics. Through the simulation, the abundance distribution of 13C isotope was obtained under the conditions of total reflux, concentration and continuous rectification operation, and the visualization of the abundance change of the 13C isotope in the two dimensions of space and time was realized. On the other hand, comparing the dynamic simulation values with the experimental data, the results show that they are agree well, and the relative errors of the enrichment equilibrium abundance and equilibrium time are both less than 15%, which indicate that the accuracy of the dynamic simulation calculation method of 13C isotope for cryogenic rectification separation is verified, which can be further used to theoretically predict the abundance enrichment process in the production plant of high abundance 13C isotope.

     

/

返回文章
返回