双层错位DOI脑PET探测器晶体厚度组合优化设计

魏清阳, 许书钰, 戴甜甜, 吕振雷, 许天鹏, 江年铭, 马天予, 刘亚强

魏清阳, 许书钰, 戴甜甜, 吕振雷, 许天鹏, 江年铭, 马天予, 刘亚强. 双层错位DOI脑PET探测器晶体厚度组合优化设计[J]. 原子能科学技术, 2020, 54(9): 1704-1708. DOI: 10.7538/yzk.2019.youxian.0745
引用本文: 魏清阳, 许书钰, 戴甜甜, 吕振雷, 许天鹏, 江年铭, 马天予, 刘亚强. 双层错位DOI脑PET探测器晶体厚度组合优化设计[J]. 原子能科学技术, 2020, 54(9): 1704-1708. DOI: 10.7538/yzk.2019.youxian.0745
WEI Qingyang, XU Shuyu, DAI Tiantian, LYU Zhenlei, XU Tianpeng, JIANG Nianming, MA Tianyu, LIU Yaqiang. Optimization Design of Crystal Thickness Combination for Dual-layer-offset DOI Detector for Brain PET[J]. Atomic Energy Science and Technology, 2020, 54(9): 1704-1708. DOI: 10.7538/yzk.2019.youxian.0745
Citation: WEI Qingyang, XU Shuyu, DAI Tiantian, LYU Zhenlei, XU Tianpeng, JIANG Nianming, MA Tianyu, LIU Yaqiang. Optimization Design of Crystal Thickness Combination for Dual-layer-offset DOI Detector for Brain PET[J]. Atomic Energy Science and Technology, 2020, 54(9): 1704-1708. DOI: 10.7538/yzk.2019.youxian.0745

双层错位DOI脑PET探测器晶体厚度组合优化设计

Optimization Design of Crystal Thickness Combination for Dual-layer-offset DOI Detector for Brain PET

  • 摘要: 双层错位晶体阵列是正电子发射断层成像(PET)仪获取作用深度(DOI)信息的一种低成本且简便的方案。为获得晶体厚度最优组合方案,本文使用GATE软件进行蒙特卡罗仿真研究。模拟兼容核磁共振成像(MRI)的嵌入式脑PET,环内径345 mm,使用硅酸钇镥(LYSO)晶体,2层晶体总厚度20 mm,内层晶体从0 mm到10 mm共11种厚度(间隔1 mm);进行点源模拟实验,点源位于中心断层x轴上,偏移从x=0 cm到x=10 cm共6种情况(间隔2 cm)。计算中心点灵敏度;采用滤波反投影算法重建图像,评估径向空间分辨率。结果显示,双层晶体的设计相比于单层晶体灵敏度略有下降,但系统径向空间分辨率显著提高且其均匀性得到改善。随着内层晶体厚度的增大,视野平均径向空间分辨率先减小后增大,在内层晶体厚度为8 mm时达到最小。综上所述,所设计的双层错位DOI脑PET探测器晶体厚度最优组合方案为内层晶体厚度8 mm、外层晶体厚度12 mm。

     

    Abstract: Dual-layer-offset crystal array is a low cost and simple scheme for positron emission tomography (PET) system to achieve depth of interaction (DOI) information. Different thickness combinations of two layer crystals influence system performances. Monte Carlo simulations using GATE toolkit were implemented to optimize the design by evaluating the performances of the system with different thickness combinations in this study. Eleven magnetic resonance imaging (MRI) compatible brain PET inserted systems with an inner diameter of 345 mm, dual layer LYSO of 20 mm total thickness and inner layer thickness varied from 0 mm to 10 mm with a step size of 1 mm were built. Six point sources in the x-axis of the center slice from x=0 cm to x=10 cm with an interval of 2 cm were simulated. The sensitivity at the center was calculated and the radial resolutions were evaluated using the reconstructed points by the filtered back projection algorithm. The results show that dual-layer crystal design has a slight sensitivity decrease, but can significantly improve the radial spatial resolution and the resolution uniformity compared with the single-layer design. With the thickness increase of the inner crystal, the average radial spatial resolution decreases and then increases, and achieves minimal at inner layer with a thickness of 8 mm. In conclusion, 8 mm in the inner layer and 12 mm in the outer layer is the optimal design for the brain PET system with 20 mm dual-layer-offset crystal proposed in this study.

     

  • [1] BEYER T, TOWNSEND D W, BRUN T, et al. A combined PET/CT scanner for clinical oncology[J]. Journal of Nuclear Medicine, 2000, 41(8): 1369-1379.
    [2] 付鑫,任宁,邝忠华,等. PET/MRI仪器研发的历史和现状[J]. 中国医学物理学杂志,2018, 35(10):1181-1186.FU Xin, REN Ning, KUANG Zhonghua, et al. History and current status of PET/MRI instrument development[J]. Chinese Journal of Medical Physics, 2018, 35(10): 1181-1186(in Chinese).
    [3] DRZEZGA A, SOUVATZOGLOU M, EIBER M, et al. First clinical experience with integrated whole-body PET/MR: Comparison to PET/CT in patients with oncologic diagnoses[J]. Journal of Nuclear Medicine, 2012, 53(6): 845-855.
    [4] KO G B, YOON H S, KIM K Y, et al. Simultaneous multiparametric PET/MRI with silicon photomultiplier PET and ultra-high-field MRI for small-animal imaging[J]. Journal of Nuclear Medicine, 2016, 57(8): 1309-1315.
    [5] 魏清阳,王粉花,许天鹏,等. 具有间隙反射膜的稀疏SiPM阵列PET探测器性能评估[J]. 清华大学学报:自然科学版,2018,58(10):929-933.WEI Qingyang, WANG Fenhua, XU Tianpeng, et al. Performance evaluation of a PET detector with a sparse SiPM array and gap reflectors[J]. Journal of Tsinghua University: Science and Technology, 2018, 58(10): 929-933(in Chinese).
    [6] WEI Q Y, WANG S, XU T P, et al. Development of an MR-compatible DOI-PET detector module[J]. EJNMMI Physics, 2015, 2(1): A4.
    [7] GU Z, TASCHEREAU R, VU N T, et al. Performance evaluation of G8, a high-sensitivity benchtop preclinical PET/CT tomograph[J]. Journal of Nuclear Medicine, 2019, 60(1): 142-149.
    [8] CHANG C M, CATES J W, LEVIN C S. Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector[J]. Physics in Medicine and Biology, 2017, 62(1): 258-271.
    [9] WEI Q Y, XU T P, DAI T T, et al. Development of a compact DOI-TOF detector module for high-performance PET systems[J]. Nuclear Science and Techniques, 2017, 28(4): 43.
    [10] 魏清阳,戴甜甜,谷宇,等. 基于蛇形光路的PET 探测器作用深度提取方法[J]. 光子学报,2017,46(3):304002.WEI Qingyang, DAI Tiantian, GU Yu, et al. Method for extracting depth of PET detector based on serpentine optical path[J]. Acta Photonica Sinica, 2017, 46(3): 304002(in Chinese).
    [11] KUANG Z, YANG Q, WANG X, et al. Performance of a depth encoding PET detector module using light sharing and single-ended readout with SiPMs[J]. Physics in Medicine and Biology, 2019, 64(8): 085012.
    [12] FAN P, MA T Y, WEI Q Y, et al. Choice of crystal surface finishing for a dual-ended readout depth-of-interaction (DOI) detector[J]. Physics in Medicine and Biology, 2016, 61(3): 1041-1056.
    [13] KUANG Z, SANG Z, WANG X, et al. Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs[J]. Medical Physics, 2018, 45(2): 613-621.
    [14] WEI Q Y, DAI T T, MA T Y, et al. Crystal identification in dual-layer-offset DOI-PET detectors using stratified peak tracking based on SVD and mean-shift algorithm[J]. IEEE Transactions on Nuclear Science, 2016, 63(5): 2502-2508.
    [15] CHUNG Y H, CHOI Y, CHO G, et al. Optimization of dual layer phoswich detector consisting of LSO and LuYAP for small animal PET[J]. IEEE Transactions on Nuclear Science, 2005, 52: 217-221.
    [16] JAN S, SANTIN G, STRULT D, et al. GATE: A simulation toolkit for PET and SPECT[J]. Physics in Medicine and Biology, 2004, 49(19): 4543-4561.
  • 期刊类型引用(1)

    1. 徐一帆,侯岩松,纪英财,孙立风,魏清阳. 基于SOM神经网络和均值漂移算法的DOI-PET探测器泛场图像晶体识别. 原子能科学技术. 2022(S1): 235-242 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  345
  • HTML全文浏览量:  0
  • PDF下载量:  1017
  • 被引次数: 1
出版历程
  • 刊出日期:  2020-09-19

目录

    /

    返回文章
    返回