罗成, 杨伟顺, 谢文君, 李长春, 柴振, 朱小荣, 刘建龙, 焦纪强, 万亚鹏, 蔺晓建, 马向利, 张喜平, 蒙峻, 陈叔平. 医用重离子加速器薄壁真空室研制[J]. 原子能科学技术, 2020, 54(11): 2245-2251. DOI: 10.7538/yzk.2019.youxian.0798
引用本文: 罗成, 杨伟顺, 谢文君, 李长春, 柴振, 朱小荣, 刘建龙, 焦纪强, 万亚鹏, 蔺晓建, 马向利, 张喜平, 蒙峻, 陈叔平. 医用重离子加速器薄壁真空室研制[J]. 原子能科学技术, 2020, 54(11): 2245-2251. DOI: 10.7538/yzk.2019.youxian.0798
LUO Cheng, YANG Weishun, XIE Wenjun, LI Changchun, CHAI Zhen, ZHU Xiaorong, LIU Jianlong, JIAO Jiqiang, WAN Yapeng, LIN Xiaojian, MA Xiangli, ZHANG Xiping, MENG Jun, CHEN Shuping. Development of Thin-wall Vacuum Chamber for Heavy Ion Medical Accelerator[J]. Atomic Energy Science and Technology, 2020, 54(11): 2245-2251. DOI: 10.7538/yzk.2019.youxian.0798
Citation: LUO Cheng, YANG Weishun, XIE Wenjun, LI Changchun, CHAI Zhen, ZHU Xiaorong, LIU Jianlong, JIAO Jiqiang, WAN Yapeng, LIN Xiaojian, MA Xiangli, ZHANG Xiping, MENG Jun, CHEN Shuping. Development of Thin-wall Vacuum Chamber for Heavy Ion Medical Accelerator[J]. Atomic Energy Science and Technology, 2020, 54(11): 2245-2251. DOI: 10.7538/yzk.2019.youxian.0798

医用重离子加速器薄壁真空室研制

Development of Thin-wall Vacuum Chamber for Heavy Ion Medical Accelerator

  • 摘要: 中国科学院近代物理研究所研制的医用重离子加速器装置是我国第1台拥有自主知识产权的医用重离子加速器,其高频脉冲二极磁铁使用RAMPING工作模式且磁场上升速率为1.6 T/s,所以安装在高频脉冲磁铁内的真空室采用一种薄壁加筋结构不锈钢真空室以减少涡流对离子束稳定性的影响。然而由于薄壁加筋不锈钢真空室占用磁铁气隙尺寸偏大,不仅造成了磁铁造价成本偏高,更是提高了运维成本。基于以上原因,本文提出陶瓷内衬薄壁(0.3 mm)真空室,并研制了原理样机。测试结果表明:样机真空度进入了10-10 Pa量级范围,并可有效减小磁铁气隙,是未来加速器薄壁真空室的发展方向。

     

    Abstract: Heavy Ion Medical Machine (HIMM), developed by the Institute of Modern Physics, Chinese Academy of Sciences, is the first medical heavy ion accelerator with independent intellectual property rights in China. Because the RAMPING mode was used for high frequency pulse dipole magnets of HIMM and the rising rate of magnetic field is 1.6 T/s, the vacuum chamber installed in the high frequency pulsed magnet is a thin-wall stainless vacuum chamber with reinforcing ribs to reduce the influence of eddy current on the ion beam stability. However, the gap size of magnet occupied by thin-wall stainless vacuum chamber with reinforcing ribs is too large, and it not only causes the high cost of magnets, but also greatly improves the maintenance cost. Based on these reasons, a new thin-wall vacuum chamber (0.3 mm) with ceramic lining was put forward and the prototype was designed and manufactured. The test results show that the obtained pressure of the prototype is in the order magnitude of 10-10 Pa, and the magnet gap can be effectively reduced. And it is the development direction of thin-wall vacuum chamber of accelerator in the future.

     

  • [1] BELLI M, BETTEGA D, CALZOLARI P, et al. Effectiveness of monoenergetic and spread-out bragg peak carbon-ions for inactivation of various normal and tumour human cell lines[J]. Journal of Radiation Research, 2008, 49(6): 597-607.
    [2] MA C C. Proton and carbon ion therapy[J]. Medical Physics, 2013, 40(5): 057301.
    [3] CAO Y, LI J Q, SUN L T, et al. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy[J]. Review of Scientific Instruments, 2014, 85(2): 02A960.
    [4] 郝焕锋,赵红卫,姚庆高,等. 医用重离子回旋加速器引出系统设计[J]. 强激光与粒子束,2013,25(11):2991-2994.HAO Huanfeng, ZHAO Hongwei, YAO Qinggao, et al. Design of the extraction system of heavy ion medical cyclotron[J]. High Power Laser and Particle Beams, 2013, 25(11): 2991-2994(in Chinese).
    [5] 张建川,周德泰,李运杰,等. HIMM回旋加速器控制系统中连锁保护功能设计与实现[J]. 强激光与粒子束,2016,28(12):125107-1-125107-5.ZHANG Jianchuan, ZHOU Detai, LI Yunjie, et al. Design of the interlock function for HIMM cyclotron control system[J]. High Power Laser and Particle Beams, 2016, 28(12): 125107(in Chinese).
    [6] KITAGAWA A, MURAMATSU M, SEKIGUCHI M, et al. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba[J]. Review of Scientific Instruments, 2000, 71(2): 1061-1063.
    [7] MENG J, LUO C, CHAI Z, et al. Use of combined sputter ion and NEG pumps in the heavy ion medical machine[J]. Vacuum, 2015, 114(1): 108-113.
    [8] ZHANG Jinquan, SONG Mingtao, WEI Baowen, et al. Design of synchrotron for hadron therapy[J]. Chinese Physics C, 2007, 31(12): 1122-1125.
    [9] ZHANG X, YANG W, HAN S, et al. The main dipole magnets design and test of HIMM project[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-4.
    [10] KRAEMER A. Challenges of the FAIR Vacuum System[C]∥IPAC2012. [S. 1.]: [s. n.], 2012.
    [11] KRÄMER A, BELLACHIOMA M C, KOLLMUS H, et al. The vacuum system of FAIR accelerator facility[C]∥EPAC2006. [S. 1.]: [s. n.], 2006.
    [12] SHIM S Y, KAUSCHKE M, KRÄMER A, et al. Thermal analysis of UHV beam tube of SIS100 for FAIR[C]∥ICEC2008. [S. 1.]: [s. n.], 2008.
    [13] SPILLER P J, BALSS R, BLEILE A, et al. Status of the FAIR synchrotron projects SIS18 upgrade and SIS100[C]∥IPAC2014. [S. 1.]: [s. n.], 2014.
    [14] WILFERT S, KRAEMER A, KOLLMUS H, et al. Details of the cryogenic vacuum system of SIS100 at FAIR[C]∥IVC 2010. [S. 1.]: [s. n.], 2010.
    [15] DONG H Y, HONG S, LI Q, et al. The vacuum system of the China spallation neutron source[J]. Vacuum, 2018, 154(1): 75-81.
    [16] 赵籍九,尹兆升. 粒子加速器技术[M]. 北京:高等教育出版社,2006:57-60.
    [17] FRIALIT®-DEGUSSIT® Zirconium oxide material properties[DB/OL]. 2011. http:∥c685503041.bj.wezhan.cn/zro2.
    [18] 利剑,陈兰桂,蒋永洪. 氧化钇稳定的氧化锆粉体的制备方法:中国,CN105503181A[P]. 2016-04-20.
    [19] 冯焱,曾祥坡,张涤新,等. 小孔流导法材料放气率测量装置的设计[J]. 宇航计测技术,2010,30(3):66-69.FANG Yan, ZENG Xiangpo, ZHANG Dixin, et al. design of measurement apparatus for material outgassing rate by orifice conductance method[J]. Journal of Astronautic Metrology and Measurement, 2010, 30(3): 66-69(in Chinese).
    [20] SAITO K, SATO Y, INAYOSHI S, et al. Measurement system for low outgassing materials by switching between two pumping paths[J]. Vacuum, 1996, 47(1): 749-752.
    [21] YANG J C, XIA J W, XIAO G Q, et al. High Intensity heavy ion Accelerator Facility (HIAF) in China[J]. Nuclear Instruments and Methods in Physics Research B, 2013, 317(1): 263-265.
    [22] LUO C, LI P, XIE W J, et al. Application of compact NEG-sputter ion pump combination in UHV system of HIAF[J]. Vacuum, 2018, 157(1): 159-165.
    [23] KERSEVAN R, PONS J L. Introduction to MOLFLOW+: New GPU-based Monte Carlo for simulating molecular flows[J]. J Vac Sci Technol A, 2009, 27(4): 1017-1023.
  • 期刊类型引用(3)

    1. 焦纪强,蒙峻,谢文君,刘建龙,魏宁斐,罗成,郭方准,王润成. 超高真空环境下TC4钛合金和ZrO_2陶瓷的出气性能研究. 材料导报. 2025(01): 285-289 . 百度学术
    2. 王强,俞亮山,周翔. 重离子医院辐射防护管理研究. 科技经济导刊. 2021(23): 144-145 . 百度学术
    3. 蒙峻,杨伟顺,罗成,谢文君,柴振,李长春,焦纪强,万亚鹏,刘建龙,蔺晓建,马向利,朱小荣,张喜平,魏宁斐. 大型重离子加速器真空系统及其挑战. 真空科学与技术学报. 2021(09): 826-834 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  198
  • HTML全文浏览量:  0
  • PDF下载量:  1214
  • 被引次数: 3
出版历程
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回