氢化钛镍合金阴极真空弧放电离子特性研究

赵光义, 王腾钫, 吴聪, 李正宏

赵光义, 王腾钫, 吴聪, 李正宏. 氢化钛镍合金阴极真空弧放电离子特性研究[J]. 原子能科学技术, 2020, 54(4): 577-582. DOI: 10.7538/yzk.2019.youxian.0848
引用本文: 赵光义, 王腾钫, 吴聪, 李正宏. 氢化钛镍合金阴极真空弧放电离子特性研究[J]. 原子能科学技术, 2020, 54(4): 577-582. DOI: 10.7538/yzk.2019.youxian.0848
ZHAO Guangyi, WANG Tengfang, WU Cong, LI Zhenghong. Study of Ion Characteristic of Vacuum Arc Ion Source with Titanium-nickel Alloy Hydride Cathode[J]. Atomic Energy Science and Technology, 2020, 54(4): 577-582. DOI: 10.7538/yzk.2019.youxian.0848
Citation: ZHAO Guangyi, WANG Tengfang, WU Cong, LI Zhenghong. Study of Ion Characteristic of Vacuum Arc Ion Source with Titanium-nickel Alloy Hydride Cathode[J]. Atomic Energy Science and Technology, 2020, 54(4): 577-582. DOI: 10.7538/yzk.2019.youxian.0848

氢化钛镍合金阴极真空弧放电离子特性研究

Study of Ion Characteristic of Vacuum Arc Ion Source with Titanium-nickel Alloy Hydride Cathode

  • 摘要: 本文将氢化钛镍合金材料应用于强流长脉冲(200 A/270 μs)真空弧放电实验中,该材料能在强流长脉冲真空弧放电产生的高温条件下保持较好的稳定性。使用飞行时间谱仪获得了氢化钛镍合金阴极真空弧放电产生的离子电荷态分布和离子成分。结果表明:Tin+和Nin+电荷态为1+、2+和3+,在放电过程的早期(0~30 μs),H+成分随时间逐渐增加,在30 μs时达到最大比例57%,而Tin+和Nin+(n=1,2,3)离子成分随时间逐渐减少,在30 μs时达到最小比例43%;在放电过程的后期(30~270 μs),H+成分迅速下降且在75 μs后保持在总离子流的12%左右直至放电结束,Tin+和Nin+(n=1,2,3)含量随时间逐步增加,且在75 μs后保持在总离子流的88%左右直至放电结束。

     

    Abstract: The titanium-nickel alloy hydride was applied to high-current long pulse (200 A/270 μs) vacuum arc discharging in this paper, which is more resistant to fragmentation and maintains good stability under high temperature condition generated by high-current long pulse vacuum arc discharging. In addition, an experimental study of the ion charge state distribution and mass-charge component of vacuum arc discharging with titanium-nickel alloy hydride cathode by the time-of-flight method was carried out for the first time. The results show that titanium ion and nickel ion have charge states of 1+, 2+, and 3+. Meanwhile, in the early stage of the discharging process (0-30 μs), the composition of H+ gradually increases with time, and reaches a maximum ratio of 57% at 30 μs, while the compositions of Tin+ and Nin+ (n=1,2,3) rapidly decrease with time, and reach a minimum ratio of 43% at 30 μs; in the later stage of the discharging process (30-270 μs), the composition of H+ begins to decrease rapidly and remains unchanged at around 12% after 75 μs until the end of the pulse, and the compositions of Tin+ and Nin+ (n=1, 2, 3) gradually increase with time and remain around 88% after 75 μs until the end of the pulse.

     

  • [1] BROWN I G, WASHBUM J. The MEVVA ion source for high current metal ion implantation[J]. Nuclear Instruments and Methods in Physics Research Section B, 1986, 21(1): 201-204.
    [2] 唐平瀛,向伟,王春燕,等. 真空弧离子源引出束流在加速空间的分布[J]. 原子能科学技术,2005,39(1):93-96.TANG Pingying, XIANG Wei, WANG Chunyan, et al. Spatial beam distribution of vacuum arc ion source in accelerating area[J]. Atomic Energy Science and Technology, 2005, 39(1): 93-96(in Chinese).
    [3] NIKOLAEV A G, YUSHKOV G Y, SAVKIN K P, et al. Upgraded vacuum arc ion source for metal ion implantation[J]. Review of Scientific Instruments, 2012, 83(2): 02A501.
    [4] ZENG Z M, ZHANG T, TANG B Y, et al. Surface modification of steel by metal plasma immersion ion implantation using vacuum arc plasma source[J]. Surface and Coatings Technology, 1999, 120(1): 659-662.
    [5] BROWN I G, OKS E M. Vacuum arc ion sources-a brief historical review[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1222-1228.
    [6] BROWN I G. Vacuum arc ion sources[J]. Review of Scientific Instruments, 2014, 65(10): 3061-3081.
    [7] BROWN I G, GODECHOT X. Vacuum arc ion charge-state distributions[J]. IEEE Transactions on Plasma Science, 1991, 19(5): 713-717.
    [8] ANDERS A. Ion charge state distributions of vacuum arc plasmas[J]. The Origin of Species, 1997, 55(1): 969-981.
    [9] BUGAEV S P, NIKOLAEV A G, OKS E M, et al. The 100 kV gas and metal ion source for high current ion implantation[J]. Review of Scientific Instruments, 1992, 63(4): 2422-2424.
    [10] 唐建,邓春凤,伍春雷,等. 脉冲金属氢化物真空弧放电等离子体发射光谱特性[J]. 强激光与粒子束,2015,27(11):41-46.
    TANG Jian, DENG Chunfeng, WU Chunlei, et al. Spectral property investigation of pulsed metallic hydride vacuum arc discharge plasma[J]. High Power Laser and Particle Beams, 2015, 27(11): 41-46(in Chinese).
    [11] 卢金炼,曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究[J]. 物理学报,2012,61(14):497-502.
    LU Jinlian, CAO Juexian. A firstprinciples study of capacity and mechanism of a single titanium atom storing hydrogen[J]. Acta Physica Sinica, 2012, 61(14): 497-502(in Chinese).
    [12] WALKO R J, ROCHAU G E. A high output neutron tube using an occluded gas ion source[J]. IEEE Transactions on Nuclear Science, 1980, 28(2): 1531-1534.
    [13] HIPPSLEY C A, STRANGWOOD M. Embrittlement and crack growth in high temperature intermetallics[J]. Metal Science Journal, 2014, 8(4): 350-358.
    [14] DEKHTYAR A I, IVASISHIN O M, MOISEEVA I V, et al. The mechanical properties of compact titanium produced from titanium hydride powders using self-propagating high-temperature synthesis[J]. Powder Metallurgy & Metal Ceramics, 2015, 53(9-10): 549-556.
    [15] CHEIFETZ E, ADAR U, DAVARA G. Ions emitted by a pulsed titanium-hydride spark plasma source[C]∥Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum. Berkeley: [s. n.], 1996.
    [16] CHEN L, JIN D Z, CHENG L, et al. Ion charge state distribution and ion velocities in the titanium hydride cathodic vacuum arc plasmas[J]. Vacuum, 2012, 86(7): 813-816.
    [17] BROWN I G, GALVIN J E, MACGILL R A, et al. Improved time-of-flight ion charge state diagnostic[J]. Review of Scientific Instruments, 1987, 58(9): 1589-1592.
    [18] GUSHENETS V I, NIKOLAEV A G, OKS E M, et al. Simple and inexpensive time-of-flight charge-to-mass analyzer for ion beam source characterization[J]. Review of Scientific Instruments, 2006, 77(6): 301-303.
    [19] TSURUTA K, YAMAZAKI N. Residence time of metal ions generated from microsecond vacuum arcs[J]. IEEE Transactions on Plasma Science, 1993, 21(5): 426-430.
    [20] ANDERS A, ANDERS S, JUTTNER B, et al. Time dependence of vacuum arc parameters[J]. IEEE Transactions on Plasma Science, 1993, 21(3): 305-311.
    [21] CHUAN J B, WAN H, YANG J, et al. Microstructure characterization of graphite cathodes for explosive field-emission[J]. Applied Mechanics & Materials, 2013, 248(3): 268-273.
    [22] YOSHIHIKO H. Thermal decomposition of titanium hydride and its application to low pressure hydrogen control[J]. Journal of Vacuum Science & Technology A, 1984, 2(1): 16-21.
    [23] ANDERS A. A periodic table of ion charge-state distributions observed in the transition region between vacuum sparks and vacuum arcs[J]. IEEE Transactions on Plasma Science, 2001, 29(2): 393-398.
    [24] COLE K. Joule heating of the upper atmosphere[J]. Australian Journal of Physics, 1962, 15(2): 223-236.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  217
  • HTML全文浏览量:  0
  • PDF下载量:  1044
  • 被引次数: 1
出版历程
  • 刊出日期:  2020-04-19

目录

    /

    返回文章
    返回