Abstract:
Boundary condition processing is one of the difficulties encountered in the application of method of characteristics (MOC) to arbitrary three-dimensional geometry. In this paper, a boundary condition processing method was proposed, which not only preserved the track continuity as cyclic track method, but also could be applied to arbitrary geometry as the interpolation method. The MOC equation was derived under the flat source approximation and an internal iterative method was proposed in which the source term and the boundary angular flux were processed separately. It was proved that the equation had a unique solution which could be constructed similarly to the cyclic track method. The iterative calculation flow was given by numerical integration and weight interpolation. Takeda benchmark, single uranium sphere model with water cavity and C5G7 benchmark were calculated to test the accuracy. The maximum error of
keff is 21, 319 and 138.8 pcm respectively, which shows that the method is reliable. This method can be applied to arbitrary geometry without storing boundary fluxes and performing boundary iteration.