高性能计算分析技术在大型钠冷快堆屏蔽设计中的应用

Application of High Performance Computing Analysis Technology in Shielding Design of Large Sodium-cooled Fast Reactor

  • 摘要: 钠冷快堆堆容器是一体化的池式结构,由众多堆内构件组成且结构复杂,堆芯到生物屏蔽外中子输运过程中各向异性明显且深穿透问题严重,大尺度范围下三维SN方法计算是制约快堆屏蔽设计的瓶颈。通过将三维SN程序与高性能计算技术相结合,采用并行计算方法可解决快堆堆本体内各向异性的三维深穿透屏蔽问题。本文以中国示范快堆(CFR600)堆本体为研究对象,采用JSNT-CFR程序详细计算了堆本体内的中子注量率、光子注量率、剂量率,并将计算结果与已有的二维程序设计结果进行比较。结果表明,将传统屏蔽计算方法与高性能计算相结合,能满足CFR600堆本体屏蔽计算精度要求,获得更为全面的三维展示效果,在计算模型复杂、粒子穿透深度等复杂问题的屏蔽计算上具有较明显的优势,为大型钠冷快堆屏蔽设计提供有力支撑。

     

    Abstract: The sodium-cooled fast reactor container is an integrated pool structure composed of numerous internal components and complex structure. The anisotropy is obvious and the deep penetration problem is serious in the process of neutron transport from core to biological shielding. The calculation of three-dimensional SN method in large scale is the bottleneck restricting in the design of fast reactor shielding. By combining with high performance computing technology, the parallel computing scheme is used to solve the anisotropic three-dimensional deep penetration shielding calculation in the fast reactor. In this paper, the China Demonstration Fast Reactor (CFR600) reactor block was taken as the research object. Using JSNT-CFR code, the neutron flux rate, photon flux rate, and dose rate in the reactor block were calculated in detail. The calculation results were compared with those of the existing two-dimensional code. The results show that combining the traditional shielding calculation method with high performance computing can meet the requirements of CFR600 reactor block shielding calculation accuracy, and obtain a more comprehensive three-dimensional display effect. It can solve the problem of shielding calculation of complex problems such as complex model and particle penetration depth. It has obvious advantages and provides strong support for the large sodium-cooled fast reactor shielding design.

     

/

返回文章
返回