Abstract:
The special geometric structure of the rod bundle channel can induce complicated flow transition of the coolant, and investigation on the flow transition rules is sufficiently important. In the current study, experimental and numerical study on the flow transition characteristics in the 5×5 rod bundle channel was carried out. Experiments were performed to obtain the variation characteristics of the resistance coefficient and CFD simulation was performed using different turbulence models in ANSYS Fluent. The results show that the simulation with SST
k-ω turbulence model agrees well with the experimental data. The simulated turbulence intensity and resistance coefficient at different measurement locations and in different flow conditions were compared. For different subchannels, the turbulence intensity and the resistance coefficient are higher in the center subchannel than those in the edge subchannel. For the same subchannel, the turbulence intensity and the shear stress in the subchannel center are higher than those in the subchannel edge. This result indicates that the turbulence intensity, shear stress and resistance coefficient in the rod bundle are not uniform due to the influence of the wall surface. This non-uniform spatial interaction makes the transition point obscure.