[1] |
PUSA M. Incorporating sensitivity and uncertainty analysis to a lattice physics code with application to CASMO-4[J]. Annals of Nuclear Energy, 2012, 40(1): 153-162.
|
[2] |
VU T M, KITADA T. Impact of thorium capture cross section uncertainty on the thorium utilized ADS reactivity calculation[J]. Science and Technology of Nuclear Installations, 2014, 2014(2): 175-180.
|
[3] |
FIORITO L, PIEDRA D, CABELLOS O, et al. Inventory calculation and nuclear data uncertainty propagation on light water reactor fuel using ALEPH-2 and SCALE 6.2[J]. Annals of Nuclear Energy, 2015, 83: 137-146.
|
[4] |
FIORITO L, DIEZ C, CABELLOS O, et al. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation[J]. Annals of Nuclear Energy, 2014, 69: 331-343.
|
[5] |
ALIBERTI G, PALMIOTTI G, SALVATORES M, et al. Nuclear data sensitivity, uncertainty and target accuracy assessment for future nuclear systems[J]. Annals of Nuclear Energy, 2006, 33: 700-733.
|
[6] |
BUSS O, HOEFER A, NEUBER J C. NUDUNA-nuclear data uncertainty analysis[C]∥International Conference on Nuclear Criticality (ICNC). Edinburgh, Scoltland: [s. n.], 2011.
|
[7] |
REARDEN B, JESSEE M, WILLIAMS M. TSUNAMI-1D: Control module for one dimensional cross-section sensitivity and uncertainty[R]. USA: Oak Ridge National Laboratory, 2011.
|
[8] |
ZU T J, YANG C, CAO L Z, et al. Nuclear data uncertainty propagation analysis for depletion calculation in PWR and FR pin-cells[J]. Annals of Nuclear Energy, 2016, 94: 399-408.
|
[9] |
CAO L Z, YANG C, ZU T J, et al. Nuclear data uncertainty propagation analysis for PWR depletion calculation[C]∥PHYSOR 2016. USA: [s. n.], 2016.
|
[10] |
IVANOV K, AVRAMOVA M, KODELI I A, et al. Benchmark for uncertainty analysis in modeling (UAM) for design, operation and safety analysis of LWRs[R]. Citeseer: [s. n.], 2007.
|
[11] |
CABELLOS O. Presentation and discussion of the UAM/exerciseⅠ-1b: “Pin-Cell Burn-Up Benchmark” with the hybrid method[J]. Science and Technology of Nuclear Installations, 2013, 2013(3): 1-12.
|
[12] |
TAKEDA T, UMANO T. Burnup sensitivity analysis in a fast breeder reactor, Part Ⅰ: Sensitivity calculation method with generalized perturbation theory[J]. Nuclear Science and Engineering, 1985, 91(1): 1-10.
|
[13] |
CHIBA G, OKUMURA K, OIZUMI A, et al. Sensitivity analysis of fission product concentrations for light water reactor burned fuel[J]. J Nucl Sci Technol, 2010, 47: 652-660.
|
[14] |
DEVILLERS C. The importance of fission product nuclear data in reactor design and operation[R]. Petten: International Atomic Energy Agency, 1977.
|
[15] |
KATAKURA J. Uncertainty analyses of decay heat summation calculations using JENDL, JEFF, and ENDF files[J]. Journal of Nuclear Science and Technology, 2013, 50(8): 799-807.
|
[16] |
LI Y, TIAN C, ZHENG Y, et al. NECP-CACTI: Pressurized water reactor lattice code development[C]∥Transactions of the American Nuclear Society. San Antonio: [s. n.], 2015.
|
[17] |
HUANG K, WU H C, LI Y Z, et al. Generalized depletion chain simplification based on significance analysis[C]∥PHYSOR 2016. USA: [s. n.], 2016.
|
[18] |
CABELLOS O, PIEDRA D, DIEZ C J. Impact of the fission yield nuclear data uncertainties in the pin-cell burnup OECD/NEA UAM benchmark[C]∥PHYSOR 2014. Japan: [s. n.], 2014.
|