针对裂变产额和半衰期的燃耗计算灵敏度和不确定度分析方法

韩丰林, 祖铁军, 吴宏春, 曹良志

韩丰林, 祖铁军, 吴宏春, 曹良志. 针对裂变产额和半衰期的燃耗计算灵敏度和不确定度分析方法[J]. 原子能科学技术, 2020, 54(12): 2323-2329. DOI: 10.7538/yzk.2019.youxian.0936
引用本文: 韩丰林, 祖铁军, 吴宏春, 曹良志. 针对裂变产额和半衰期的燃耗计算灵敏度和不确定度分析方法[J]. 原子能科学技术, 2020, 54(12): 2323-2329. DOI: 10.7538/yzk.2019.youxian.0936
HAN Fenglin, ZU Tiejun, WU Hongchun, CAO Liangzhi. Burnup Calculation Sensitivity and Uncertainty Analysis Method of Fission Yield and Decay Half-life[J]. Atomic Energy Science and Technology, 2020, 54(12): 2323-2329. DOI: 10.7538/yzk.2019.youxian.0936
Citation: HAN Fenglin, ZU Tiejun, WU Hongchun, CAO Liangzhi. Burnup Calculation Sensitivity and Uncertainty Analysis Method of Fission Yield and Decay Half-life[J]. Atomic Energy Science and Technology, 2020, 54(12): 2323-2329. DOI: 10.7538/yzk.2019.youxian.0936

针对裂变产额和半衰期的燃耗计算灵敏度和不确定度分析方法

Burnup Calculation Sensitivity and Uncertainty Analysis Method of Fission Yield and Decay Half-life

  • 摘要: 基于广义微扰理论推导了裂变产额和半衰期的燃耗灵敏度系数理论模型,该模型考虑了原子核密度和中子通量的相互影响,并开发了燃耗计算中有效增殖因数和原子核密度等响应参数对核数据的灵敏度和不确定度分析程序。基于评价核数据中裂变产物独立产额的标准差数据,产生了针对压缩燃耗数据库的裂变产额协方差矩阵,以提高不确定度的计算精度。基于ENDF/B-Ⅶ.1数据库量化了UAM基准题TMI-1栅元无限增殖因数及重要裂变产物和重核的原子核密度由裂变产额和半衰期引入的不确定度。数值结果表明,对于栅元无限增殖因数,裂变产额和半衰期引入的不确定度很小;对于部分裂变产物的原子核密度,裂变产额和半衰期会引入较大的不确定度。

     

    Abstract: The calculation model of sensitivity coefficient for decay half-life and fission product yield in burnup calculation was derived based on generalized perturbation theory, which considered the interaction between nuclear concentration and neutron flux. A code was developed to calculate sensitivity and uncertainty of effective neutron multiplication factors and nuclide concentration caused by nuclear data. Covariance matrix of fission yield for a simplified burnup library was generated based on standard deviation data of independent fission yield in evaluated nuclear data library to improve the accuracy of uncertainty quantification. Uncertainties induced by decay half-life and fission yield on infinite neutron multiplication factors and nuclide concentration for TMI-1 pin-cell in the UAM burnup benchmark were quantified based on ENDF/B-Ⅶ.1. The numerical results show that the uncertainty of infinite neutron multiplication factors induced by decay half-lives and fission yields is low, while the uncertainty of concentration of some fission product nuclide is high.

     

  • [1] PUSA M. Incorporating sensitivity and uncertainty analysis to a lattice physics code with application to CASMO-4[J]. Annals of Nuclear Energy, 2012, 40(1): 153-162.
    [2] VU T M, KITADA T. Impact of thorium capture cross section uncertainty on the thorium utilized ADS reactivity calculation[J]. Science and Technology of Nuclear Installations, 2014, 2014(2): 175-180.
    [3] FIORITO L, PIEDRA D, CABELLOS O, et al. Inventory calculation and nuclear data uncertainty propagation on light water reactor fuel using ALEPH-2 and SCALE 6.2[J]. Annals of Nuclear Energy, 2015, 83: 137-146.
    [4] FIORITO L, DIEZ C, CABELLOS O, et al. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation[J]. Annals of Nuclear Energy, 2014, 69: 331-343.
    [5] ALIBERTI G, PALMIOTTI G, SALVATORES M, et al. Nuclear data sensitivity, uncertainty and target accuracy assessment for future nuclear systems[J]. Annals of Nuclear Energy, 2006, 33: 700-733.
    [6] BUSS O, HOEFER A, NEUBER J C. NUDUNA-nuclear data uncertainty analysis[C]∥International Conference on Nuclear Criticality (ICNC). Edinburgh, Scoltland: [s. n.], 2011.
    [7] REARDEN B, JESSEE M, WILLIAMS M. TSUNAMI-1D: Control module for one dimensional cross-section sensitivity and uncertainty[R]. USA: Oak Ridge National Laboratory, 2011.
    [8] ZU T J, YANG C, CAO L Z, et al. Nuclear data uncertainty propagation analysis for depletion calculation in PWR and FR pin-cells[J]. Annals of Nuclear Energy, 2016, 94: 399-408.
    [9] CAO L Z, YANG C, ZU T J, et al. Nuclear data uncertainty propagation analysis for PWR depletion calculation[C]∥PHYSOR 2016. USA: [s. n.], 2016.
    [10] IVANOV K, AVRAMOVA M, KODELI I A, et al. Benchmark for uncertainty analysis in modeling (UAM) for design, operation and safety analysis of LWRs[R]. Citeseer: [s. n.], 2007.
    [11] CABELLOS O. Presentation and discussion of the UAM/exerciseⅠ-1b: “Pin-Cell Burn-Up Benchmark” with the hybrid method[J]. Science and Technology of Nuclear Installations, 2013, 2013(3): 1-12.
    [12] TAKEDA T, UMANO T. Burnup sensitivity analysis in a fast breeder reactor, Part Ⅰ: Sensitivity calculation method with generalized perturbation theory[J]. Nuclear Science and Engineering, 1985, 91(1): 1-10.
    [13] CHIBA G, OKUMURA K, OIZUMI A, et al. Sensitivity analysis of fission product concentrations for light water reactor burned fuel[J]. J Nucl Sci Technol, 2010, 47: 652-660.
    [14] DEVILLERS C. The importance of fission product nuclear data in reactor design and operation[R]. Petten: International Atomic Energy Agency, 1977.
    [15] KATAKURA J. Uncertainty analyses of decay heat summation calculations using JENDL, JEFF, and ENDF files[J]. Journal of Nuclear Science and Technology, 2013, 50(8): 799-807.
    [16] LI Y, TIAN C, ZHENG Y, et al. NECP-CACTI: Pressurized water reactor lattice code development[C]∥Transactions of the American Nuclear Society. San Antonio: [s. n.], 2015.
    [17] HUANG K, WU H C, LI Y Z, et al. Generalized depletion chain simplification based on significance analysis[C]∥PHYSOR 2016. USA: [s. n.], 2016.
    [18] CABELLOS O, PIEDRA D, DIEZ C J. Impact of the fission yield nuclear data uncertainties in the pin-cell burnup OECD/NEA UAM benchmark[C]∥PHYSOR 2014. Japan: [s. n.], 2014.
计量
  • 文章访问数:  422
  • HTML全文浏览量:  1
  • PDF下载量:  1018
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-12-19

目录

    /

    返回文章
    返回