Abstract:
The external reactor vessel cooling (ERVC) is one of the important methods to achieve the in-vessel retention (IVR), while the critical heat flux (CHF) on the outside wall of the reactor pressure vessel (RPV) decides the maximum heat removal capacity of ERVC. In present work, a small CHF test facility was established. The test surface was made of SA508 steel which was the same surface material of prototype RPV. The deionized water was used as coolant in downward-facing CHF test under pool boiling condition. The influence of the real RPV material surface at different inclination angles and sub-cooling conditions on the CHF characteristics was studied. The influence of aging on CHF was also studied. The results show that the SA508 steel surface is easily oxidized, so its CHF is higher than that of copper and stainless steel surfaces. The CHF of SA508 steel surface increases with inclination angle, but there is a turning point near 30° and the CHF below the turning angle has no obvious trend with the increase of inclination angle. The CHF increases with the sub-cooling, and it shows linear growth characteristics. The test results provide a further understanding of the CHF behavior on the RPV outside wall and lay the foundation for future research work on CHF enhancement methods.