[1] |
ZHANG Y P, DENG K H, WANG C L, et al. Experimental investigation on saturated pool boiling CHF for downward facing heating surface with different sizes and aspect ratio[J]. International Journal of Thermal Sciences, 2019, 138: 459-466.
|
[2] |
THEOFANOUS T G, ANGELINI S. Natural convection for invessel retention at prototypic Rayleigh numbers[J]. Nuclear Engineering and Design, 2000, 200: 1-9.
|
[3] |
ROUGE S. SULTAN test facility for large-scale vessel coolability in natural convection at low pressure[J]. Nuclear Engineering and Design, 1997, 169: 185-195.
|
[4] |
陆维,胡腾,赵宇峰,等. 真实表面材料及其老化效应对反应堆压力容器ERVC-CHF影响的试验研究[J]. 原子能科学技术,2016,50(10):1782-1786.LU Wei, HU Teng, ZHAO Yufeng, et al. Experimental research on influence of real surface material and aging effect on ERVC-CHF of RPV[J]. Atomic Energy Science and Technology, 2016, 50(10): 1782-1786(in Chinese).
|
[5] |
张震,熊万玉,王雄,等. 严重事故条件下压力容器下封头外表面临界热流密度实验研究[J]. 核动力工程,2016,37(5):4-9.ZHANG Zhen, XIONG Wanyu, WANG Xiong, et al. Experimental research of critical heat flux on pressure vessel lower head external surface under severe accident[J]. Nuclear Power Engineering, 2016, 37(5): 4-9(in Chinese).
|
[6] |
CHANG H J, HU T, LU W, et al. Experimental study on CHF using a full scale 2-D curved test section with additives and SA508 heater for IVR-ERVC strategy[J]. Experimental Thermal and Fluid Science, 2017, 84: 1-9.
|
[7] |
KAM D H, CHOI Y J, JEONG Y H. Critical heat flux on downward-facing carbon steel flat plates under atmospheric condition[J]. Experimental Thermal and Fluid Science, 2018, 90: 22-27.
|
[8] |
MEI Y, SHAO Y Q, GONG S J, et al. Effects of surface orientation and heater material on heat transfer coefficient and critical heat flux of nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2018, 121: 632-640.
|
[9] |
ZHONG D W, SUN J, MENG J A, et al. Effects of orientation and structure geometry on boiling heat transfer for downward facing IGTAC surfaces[J]. International Journal of Heat and Mass Transfer, 2018, 123: 468-472.
|
[10] |
毕景良,黄彦平,徐建军,等. 纳米流体饱和池沸腾传热及CHF模型研究[J]. 原子能科学技术,2017,51(6):1008-1015.BI Jingliang, HUANG Yanping, XU Jianjun, et al. Study of nanofluid saturated pool boiling heat ttansfer and CHF model[J]. Atomic Energy Science and Technology, 2017, 51(6): 1008-1015(in Chinese).
|
[11] |
陈红宇,杜军毅,邓林涛,等. 核反应堆压力容器锻件用SA508系列钢的比较和分析[J]. 大型铸锻件,2008(1):1-3.CHEN Hongyu, DU Junyi, DENG Lintao, et al. The comparison and analysis of SA508 series steel used for nuclear reactor pressure vessel forgings[J]. Heavy Casting and Forging, 2008(1): 1-3(in Chinese).
|
[12] |
SOHAG F A, BECK F R, MOHANTA L, et al. Effects of subcooling on downward facing boiling heat transfer with micro-porous coating formed by cold spray technique[J]. International Journal of Heat and Mass Transfer, 2017, 106: 767-780.
|
[13] |
田道贵,孙立成,阎昌琪,等. 两相流动中摇摆引起的附加作用分析[J]. 核动力工程,2013,34(6):75-79.TIAN Daogui, SUN Licheng, YAN Changqi, et al. Analysis of rolling induced additional effect on two-phase flow[J]. Nuclear Power Engineering, 2013, 34(6): 75-79(in Chinese).
|
[14] |
TIAN D G, YAN C Q, SUN L C. Evaluation of interfacial area transport equation in vertical bubbly two-phase flow in large diameter pipes[J]. Annals of Nuclear Energy, 2015, 75: 199-209.
|
[15] |
WANG K, ERKAN N, GONG H, et al. Effects of carbon steel surface oxidation on critical heat flux in downward-face pool boiling[J]. International Journal of Heat and Mass Transfer, 2019, 136: 470-485.
|
[16] |
THEOFANOUS T G, DINH T N, TU J P, et al. The boiling crisis phenomenon, Part Ⅱ: Dryout dynamics and burnout[J]. Experimental Thermal and Fluid Science, 2002, 26(6-7): 793-810.
|
[17] |
LEE J, CHANG S H. An experimental study on CHF in pool boiling system with SA508 test heater under atmospheric pressure[J]. Nuclear Engineering and Design, 2012, 250: 720-724.
|