池沸腾下朝向SA508钢表面临界热流密度特性试验研究

Experimental Research on Critical Heat Flux for Downward-facing Pool Boiling with SA508 Steel Plate

  • 摘要: 反应堆压力容器外部冷却(ERVC)是实现熔融物堆内滞留(IVR)的重要方案之一,而反应堆压力容器(RPV)外壁面的临界热流密度(CHF)决定了ERVC冷却能力的限值。为此建立小型CHF试验装置,并采用RPV用SA508钢制作试验块加热表面。以去离子水为试验工质,开展池沸腾下朝向CHF试验,研究真实RPV表面材料在不同倾角和过冷度条件下的CHF特性,及其老化效应对CHF的影响。结果表明:SA508钢表面极易氧化生锈,其CHF较不易生锈的铜和不锈钢表面要高;SA508钢表面CHF随倾角的增大而增加,但在30°附近存在转折,转折角以下范围内的CHF随倾角增加趋势不明显;CHF随过冷度的增加而增加,且基本呈线性变化。本试验有助于进一步认识RPV外壁面的CHF行为,为后续开展CHF增强方法研究奠定基础。

     

    Abstract: The external reactor vessel cooling (ERVC) is one of the important methods to achieve the in-vessel retention (IVR), while the critical heat flux (CHF) on the outside wall of the reactor pressure vessel (RPV) decides the maximum heat removal capacity of ERVC. In present work, a small CHF test facility was established. The test surface was made of SA508 steel which was the same surface material of prototype RPV. The deionized water was used as coolant in downward-facing CHF test under pool boiling condition. The influence of the real RPV material surface at different inclination angles and sub-cooling conditions on the CHF characteristics was studied. The influence of aging on CHF was also studied. The results show that the SA508 steel surface is easily oxidized, so its CHF is higher than that of copper and stainless steel surfaces. The CHF of SA508 steel surface increases with inclination angle, but there is a turning point near 30° and the CHF below the turning angle has no obvious trend with the increase of inclination angle. The CHF increases with the sub-cooling, and it shows linear growth characteristics. The test results provide a further understanding of the CHF behavior on the RPV outside wall and lay the foundation for future research work on CHF enhancement methods.

     

/

返回文章
返回