自然循环铅冷快堆蒸汽发生器泄漏事故下的气泡迁移

Void Transport after Steam Generator Tube Leakage in Natural Circulation Lead-cooled Fast Reactor

  • 摘要: 蒸汽发生器传热管泄漏/破裂事故是核电厂平稳运行的安全问题之一,对铅冷快堆而言,该事故发生后,二回路的高压水迅速进入一回路,会对蒸汽发生器传热管邻近的结构、一回路的流动、一回路换热乃至堆芯的反应性产生较大影响。本文针对SNCLFR-100小型自然循环铅冷快堆,对破裂后气泡的迁移以及在反应堆的积聚进行研究,基于ANSYS FLUENT,利用欧拉-拉格朗日方法对泄漏后气泡的位置和轨迹进行了追踪,并对事故下的堆芯安全进行了一定的评估。研究表明,破裂位置、气泡尺寸以及冷却剂纯净度均会对一回路气泡的迁移产生较大的影响,当一回路液态铅含有较多杂质时,蒸汽发生器较低位置发生的泄漏事故会产生相当大的系统气泡积聚和堆芯气泡累积,从而对反应堆的正常运行产生显著影响。

     

    Abstract: For lead-cooled fast reactors, steam generator tube leakage and/or rupture (SGTL/R) is one of the safety issues. During SGTL/R, high-pressure water from secondary side of main heat exchangers is injected to lower-pressure primary side. It may have significant negative impact on the integrity of structures nearby, the flow and heat transfer capabilities of the primary system and the reactivity of the core. The transport of steam bubbles and subsequent void accumulation in the primary system of SNCLFR-100 were addressed in the paper. Based on ANSYS FLUENT, Lagrangian tracking of steam bubbles (voids) in Eulerian flow field was performed to identify the locations and traces of steam bubbles after SGTL. The core safety characteristics under SGTL/R accident were also evaluated. The results show that the leakage location, bubble size and the liquid contamination all have influence on the void transport. For the contaminated primary system of a lead-cooled fast reactor, the occurrence of SGTL with a low leakage location may significantly affect the normal operation of the reactor.

     

/

返回文章
返回