MW级空间核反应堆系统热管式辐射散热器分析及优化

张昊春, 刘秀婷, 魏前明, 游尔胜, 孙铭远

张昊春, 刘秀婷, 魏前明, 游尔胜, 孙铭远. MW级空间核反应堆系统热管式辐射散热器分析及优化[J]. 原子能科学技术, 2020, 54(7): 1161-1167. DOI: 10.7538/yzk.2020.youxian.0018
引用本文: 张昊春, 刘秀婷, 魏前明, 游尔胜, 孙铭远. MW级空间核反应堆系统热管式辐射散热器分析及优化[J]. 原子能科学技术, 2020, 54(7): 1161-1167. DOI: 10.7538/yzk.2020.youxian.0018
ZHANG Haochun, LIU Xiuting, WEI Qianming, YOU Ersheng, SUN Mingyuan. Analysis and Optimization of Heat Pipe Radiation Radiator for MW Space Nuclear Reactor System[J]. Atomic Energy Science and Technology, 2020, 54(7): 1161-1167. DOI: 10.7538/yzk.2020.youxian.0018
Citation: ZHANG Haochun, LIU Xiuting, WEI Qianming, YOU Ersheng, SUN Mingyuan. Analysis and Optimization of Heat Pipe Radiation Radiator for MW Space Nuclear Reactor System[J]. Atomic Energy Science and Technology, 2020, 54(7): 1161-1167. DOI: 10.7538/yzk.2020.youxian.0018

MW级空间核反应堆系统热管式辐射散热器分析及优化

Analysis and Optimization of Heat Pipe Radiation Radiator for MW Space Nuclear Reactor System

  • 摘要: 空间核反应堆是空间核电源和核推进的研究基础,大功率核反应堆的体积和质量一直是限制航空航天设计的重要因素。针对这一问题,本文对MW级空间核反应堆系统热管式辐射散热器进行建模和分析,建立热管式辐射散热器的热阻模型,利用穷举法和遗传算法在给定工况下探讨裸碳纤维翅片长度Lf和厚度δf、冷却剂质量流量m、辐射散热器入口温度Tf1对散热器质量M的影响。结果表明,当Tf1=800 K、Lf=5 cm、δf=0.16 mm、m=9 kg/s时,M达到最优,为906.593 kg,优化了0.63%的系统质量。

     

    Abstract: Space nuclear reactor is the research foundation of space nuclear power and nuclear propulsion. The volume and mass of high-power nuclear reactor are always the important factors limiting the aerospace design. In view of this problem, the heat pipe radiation radiator of MW space nuclear reactor system was modeled and analyzed, and the thermal resistance model of the heat pipe radiation radiator was established in this study. The effect of the length Lf and thickness δf of the bare carbon fiber fin, the mass flow m of the coolant, the inlet temperature Tf1 of the radiation radiator on the mass M of the radiation radiator was discussed under the given conditions by the exhaustive method and genetic algorithm. The results show that when Tf1 is 800 K, Lf is 5 cm, δf is 0.16 mm, and m is 9 kg/s, M is the best. At this time, M is 906.593 kg, and 0.63% of the system mass is optimized.

     

  • [1] 苏著亭,杨继材,柯国土. 空间核动力[M]. 上海:上海交通大学出版社,2016.
    [2] TOURNIER J M P, EL-GENK M S. Reactor lithium heat pipes for HP-STMCs space reactor power system[C]∥AIP Conference Proceedings. Albuquerque, New Mexico: American Institute of Physics, 2004: 781-792.
    [3] EL-GENK M S, TOURNIER J M P. “SAIR”—Scalable AMTEC integrated reactor space power system[J]. Progress in Nuclear Energy, 2004, 45(1): 25-59.
    [4] POSTON D I. The heatpipe-operated mars exploration reactor (HOMER)[R]. Los Alamos: Los Alamos National Laboratory, 2000.
    [5] MASON L, CASANI J, ELLIOTT J, et al. A small fission power system for NASA planetary science missions[J]. Journal of the British Interplanetary Society, 2011, 64(3): 76-87.
    [6] 谢荣建. 地球静止轨道热控系统中热管辐射冷却器温控方案与性能研究[D]. 北京:中国科学院大学(中国科学院上海技术物理研究所),2017.
    [7] 刘逍,张文文,王成龙,等. 空间堆辐射冷却器设计分析[J]. 原子能科学技术,2018,52(5):788-794.LIU Xiao, ZHANG Wenwen, WANG Chenglong, et al. Design of space reactor radiation radiator[J]. Atomic Energy Science and Technology, 2018, 52(5): 788-794(in Chinese).
    [8] JEBRAIL F F, ANDREWS M J. performance of a heat pipe thermosyphon radiator[J]. International Journal of Energy Research, 2015, 21(2): 101-112.
    [9] BIEGER V R. Numerical modeling of heat pipe radiator and fin size optimization for low and no gravity environments[R]. Las Vegas: University of Nevada, 2013.
    [10] SAM K F C H, DENG Z. Optimization of a space based radiator[J]. Applied Thermal Engineering, 2011, 31(14-15): 2312-2320.
    [11] WENWEN Z, CHENGLONG W, RONGHUA C, et al. Preliminary design and thermal analysis of a liquid metal heat pipe radiator for TOPAZ-Ⅱ power system[J]. Annals of Nuclear Energy, 2016, 97: 208-220.
    [12] 李桂云,屠进. 高温热管工质的选择[J]. 节能技术,2001(19):2-3.
    [13] 谭拴斌,郭让民,杨升红,等. 钼铼合金的结构和性能[J]. 稀有金属,2003,27(6):788-793.TAN Shuanbin, GUO Rangmin, YANG Shenghong, et al. Structure and properties of molybdenum-rhenium alloys[J]. Chinese Journal of Rare Metals, 2003, 27(6): 788-793(in Chinese).
    [14] LIU C C, OU C L, SHIUE R K. The microstructural observation and wettability study of brazing Ti-6Al-4V and 304 stainless steel using three braze alloys[J]. Journal of Materials Science, 2002, 37: 2225-2235.
    [15] HAMADA T, FURUYAMA M, SAJIKI Y, et al. Structures and electric properties of pitch-based carbon fibers heat-treated at various temperatures[J]. Journal of Materials Research, 1990, 5(3): 570-577.
    [16] WANG Chenglong, ZHANG Dalin, QIU Suizheng, et al. Study on the characteristics of the sodium heat pipe in passive residual heat removal system of molten salt reactor[J]. Nuclear Engineering and Design, 2013, 265: 691-700.
    [17] 张文文,刘逍,田文喜,等. 兆瓦级空间热管反应堆动力系统概念设计[J]. 原子能科学技术,2017,51(12):2160-2164. ZHANG Wenwen, LIU Xiao, TIAN Wenxi, et al. Conceptual design of megawatt class space heat pipe reactor power system[J]. Atomic Energy Science and Technology, 2017, 51(12): 2160-2164(in Chinese).
    [18] 杨世铭,陶文铨. 传热学[M]. 4版. 北京:高等教育出版社,2006:249-250.
    [19] 刘逍,张文文,王成龙,等. 空间堆辐射散热器设计分析[J]. 原子能科学技术,2018,52(5):788-794. LIU Xiao, ZHANG Wenwen, WANG Chenglong, et al. Design of space reactor radiation radiator[J]. Atomic Energy Science and Technology, 2018, 52(5): 788-794(in Chinese).
  • 期刊类型引用(3)

    1. 李衍智,都家宇,吴莘馨,孙立斌,闵琪. 先进核能技术中的热管应用. 清华大学学报(自然科学版). 2023(08): 1173-1183 . 百度学术
    2. 周佐新,黄金印,张红星,赵亮. 我国航天器热控技术发展及展望. 航天器工程. 2023(06): 1-9 . 百度学术
    3. 常建,蔡杰进,谭冰. 基于扩散界面法的热管毛细芯气液界面蒸发过程模拟研究. 原子能科学技术. 2021(10): 1788-1796 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  613
  • HTML全文浏览量:  2
  • PDF下载量:  1039
  • 被引次数: 9
出版历程
  • 刊出日期:  2020-07-19

目录

    /

    返回文章
    返回