STCF RICH原型探测器的测试电子学系统构建与联调测试

侯宝临, 赵雷, 陈朕, 张志永, 刘倩, 丰建鑫, 汪安琪, 邵明, 刘建北, 李嘉铭, 封常青, 刘树彬, 安琪

侯宝临, 赵雷, 陈朕, 张志永, 刘倩, 丰建鑫, 汪安琪, 邵明, 刘建北, 李嘉铭, 封常青, 刘树彬, 安琪. STCF RICH原型探测器的测试电子学系统构建与联调测试[J]. 原子能科学技术, 2020, 54(6): 1055-1060. DOI: 10.7538/yzk.2020.youxian.0045
引用本文: 侯宝临, 赵雷, 陈朕, 张志永, 刘倩, 丰建鑫, 汪安琪, 邵明, 刘建北, 李嘉铭, 封常青, 刘树彬, 安琪. STCF RICH原型探测器的测试电子学系统构建与联调测试[J]. 原子能科学技术, 2020, 54(6): 1055-1060. DOI: 10.7538/yzk.2020.youxian.0045
HOU Baolin, ZHAO Lei, CHEN Zhen, ZHANG Zhiyong, LIU Qian, FENG Jianxin, WANG Anqi, SHAO Ming, LIU Jianbei, LI Jiaming, FENG Changqing, LIU Shubin, AN Qi. Development of Verification Electronics System for STCF RICH Prototype Detector and Its Testing with Detector[J]. Atomic Energy Science and Technology, 2020, 54(6): 1055-1060. DOI: 10.7538/yzk.2020.youxian.0045
Citation: HOU Baolin, ZHAO Lei, CHEN Zhen, ZHANG Zhiyong, LIU Qian, FENG Jianxin, WANG Anqi, SHAO Ming, LIU Jianbei, LI Jiaming, FENG Changqing, LIU Shubin, AN Qi. Development of Verification Electronics System for STCF RICH Prototype Detector and Its Testing with Detector[J]. Atomic Energy Science and Technology, 2020, 54(6): 1055-1060. DOI: 10.7538/yzk.2020.youxian.0045

STCF RICH原型探测器的测试电子学系统构建与联调测试

Development of Verification Electronics System for STCF RICH Prototype Detector and Its Testing with Detector

  • 摘要: 环形成像切伦科夫(RICH)探测器作为超级陶粲装置(STCF)带电强子(π/K/p)鉴别的技术选项之一,采用厚型气体电子倍增器+微网格气体(THGEM+Micromegas)混合探测器结构以实现对切伦科夫光的探测。针对RICH原型探测器的信号读出,构建了一套1 024通道测试电子学系统,并与探测器进行了联合测试。该测试电子学系统使用高密接插件与RICH原型探测器进行连接,探测器输出信号通过测试电子学系统上的AGET和ADC芯片进行放大、成形和波形数字化,输出的数据经FPGA处理后通过千兆以太网传输至后端PC并进行数据分析。测试结果表明,在120 fC输入动态范围下,系统的等效噪声电荷(ENC)小于0.3 fC,且具有良好的输入-输出线性。该系统成功应用于RICH原型探测器切伦科夫成像束流实验中,并取得了良好的切伦科夫光成像结果。

     

    Abstract: The ring imaging Cherenkov (RICH) prototype detector, which is based on a thick gaseous electron multiplier+micro mesh gas (THGEM+Micromegas) hybrid detector structure to detect Cherenkov light, is one of the technical options for particle identification of charged hadron (π/K/p) at the super tau-charm facility (STCF). The setup of 1 024-channel verification electronics system for the RICH prototype detector and the test result with the detector were presented. The verification electronics system imports signal from the RICH prototype detector through high-density connectors, and uses the AGET and ADC ASICs for signal amplification, shaping, and waveform digitization. The digital data are then processed by the FPGA and finally transferred to a remote PC for data analysis. The results show that the system equivalent noise charge (ENC) is less than 0.3 fC and the good input-output linearity is achieved with an input dynamic range of 120 fC. The verification electronics system is successfully applied in the beam test of the RICH prototype detector, and good Cherenkov light images are obtained.

     

  • [1] 汪晓莲,李澄,邵明,等. 粒子探测技术[M]. 合肥:中国科学技术大学出版社,2015.
    [2] SHIBATA T A. Ring imaging Cherenkov counter of HERMES for pion, kaon, proton and anti-proton identification[J]. Nuclear Instruments and Methods in Physics Research A, 2014, 766: 267-269.
    [3] BARNYAKOV A Y, BARNYAKOV M Y, BOBOROVNIKOV V S, et al. Particle identification system for the Super Charm-Tau Factory at Novosibirsk[J]. Nuclear Instruments and Methods in Physics Research A, 2020, 958: 162352.
    [4] DÜREN M, ALI A, BELIAS A, et al. Particle identification with DIRCs at PANDA[J]. Nuclear Instruments and Methods in Physics Research A, 2020, 958: 162114.
    [5] ALEXEEV M, BIRSA R, BRADAMANTE F, et al. Status of the development of large area photon detectors based on THGEMs and hybrid MPGD architectures for Cherenkov imaging applications[J]. Nuclear Instruments and Methods in Physics Research A, 2016, 824: 139-142.
    [6] 朱金涛,刘国福,杨云,等. 带电粒子鉴别方法的发展与现状[J]. 核电子学与探测技术,2014,34(2):194-199. ZHU Jintao, LIU Guofu, YANG Yun, et al. Development of charged particle identification methods[J]. Nuclear Electronics & Detection Technology, 2014, 34(2): 194-199(in Chinese).
    [7] CHEN E, ZHAO L, YU L, et al. Test system of the front-end readout for an application-specific integrated circuit for the water Cherenkov detector array at the large high-altitude air shower observatory[J]. Nuclear Science and Techniques, 2017, 28(6): 53-62.
    [8] 胡守扬,蹇司玉,周静,等. 基于APV25芯片的GEM探测器读出电子学系统的测试与改进[J]. 原子能科学技术,2014,48(6):1143-1146. HU Shouyang, JIAN Siyu, ZHOU Jing, et al. Test and improvement of readout system based on APV25 chip for GEM detector[J]. Atomic Energy Science and Technology, 2014, 48(6): 1143-1146(in Chinese).
    [9] 李兴隆,胡守扬,周静,等. 微结构气体探测器多通道高速读出系统研制[J]. 原子能科学技术,2018,52(10):1867-1873. LI Xinglong, HU Shouyang, ZHOU Jing, et al. Development of multi-channel high speed readout system for MPGD[J]. Atomic Energy Science and Technology, 2018, 52(10): 1867-1873(in Chinese).
    [10] MAXIMOV D A. Concept of data storage prototype for Super-C-Tau Factory detector[J]. JINST, 2017, 12: C09012.
    [11] ZHAO X, LIU F, DENG Z, et al. GERO: A general SCA-based readout ASIC for micro-pattern gas detectors with configurable storage depth and on-chip digitizer[J]. Nuclear Science and Techniques, 2019, 30(9): 131-138.
    [12] ANVAR S, BARON P, BLANK B, et al. AGET, the GET front-end ASIC, for the readout of the time projection chambers used in nuclear physic experiments[C]∥Proceedings of Nuclear Science Symposium and Medical Imaging Conference. Valencia:[s. n.], 2011.
    [13] 田静,刘树彬,郑其斌,等. 基于AGET芯片的MPGD探测器前端电子学设计[J]. 核电子学与探测技术,2016,36(4):430-434. TIAN Jing, LIU Shubin, ZHENG Qibin, et al. A front-end design of readout electronics for MPGD based on AGET[J]. Nuclear Electronics & Detection Technology, 2016, 36(4): 430-434(in Chinese).
    [14] 董家宁. PandaX-Ⅲ实验前端读出电子学方法研究[D]. 合肥:中国科学技术大学,2017.
    [15] LI C, FENG C Q, ZHU D Y, et al. An optical fiber-based flexible readout system for micro-pattern gas detectors[J]. JINST, 2018, 13: P04013.
    [16] DIENER R, DREYLING-ESCHWEILER J, EHRLICHMANN H, et al. The DESY Ⅱ test beam facility[J]. Nuclear Instruments and Methods in Physics Research A, 2019, 922: 265-286.
    [17] 李诚. PandaX-Ⅲ实验读出电子学系统研究[D]. 合肥:中国科学技术大学,2018.
  • 期刊类型引用(1)

    1. 吴梦之,刘倩,李平,侯宝临,汪安琪,齐叶群. 无场笼电离室电子漂移时间研究. 核电子学与探测技术. 2022(01): 131-136 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  365
  • HTML全文浏览量:  1
  • PDF下载量:  1159
  • 被引次数: 1
出版历程
  • 刊出日期:  2020-06-19

目录

    /

    返回文章
    返回