脉动流下棒束通道内流场与湍流特性的PIV实验研究

祁沛垚, 郝思佳, 苏建科, 邱枫, 谭思超

祁沛垚, 郝思佳, 苏建科, 邱枫, 谭思超. 脉动流下棒束通道内流场与湍流特性的PIV实验研究[J]. 原子能科学技术, 2021, 55(1): 142-150. DOI: 10.7538/yzk.2020.youxian.0088
引用本文: 祁沛垚, 郝思佳, 苏建科, 邱枫, 谭思超. 脉动流下棒束通道内流场与湍流特性的PIV实验研究[J]. 原子能科学技术, 2021, 55(1): 142-150. DOI: 10.7538/yzk.2020.youxian.0088
QI Peiyao, HAO Sijia, SU Jianke, QIU Feng, TAN Sichao. Experimental Study of Flow Field and Turbulence in Rod Bundle Channel under Pulsating Flow Using PIV[J]. Atomic Energy Science and Technology, 2021, 55(1): 142-150. DOI: 10.7538/yzk.2020.youxian.0088
Citation: QI Peiyao, HAO Sijia, SU Jianke, QIU Feng, TAN Sichao. Experimental Study of Flow Field and Turbulence in Rod Bundle Channel under Pulsating Flow Using PIV[J]. Atomic Energy Science and Technology, 2021, 55(1): 142-150. DOI: 10.7538/yzk.2020.youxian.0088

脉动流下棒束通道内流场与湍流特性的PIV实验研究

Experimental Study of Flow Field and Turbulence in Rod Bundle Channel under Pulsating Flow Using PIV

  • 摘要: 事故条件下路基核反应堆以及受到海洋条件附加惯性力影响的浮动核反应堆一回路冷却剂会处于非稳定流动状态,进而改变冷却剂的流动和传热特性,影响反应堆的安全运行。本文应用锁相粒子图像测速(PIV)以及折射率匹配技术分别对脉动流条件下有无定位格架棒束通道内瞬时速度进行了测量。实验结果表明:对于不带定位格架的棒束通道,加速使得靠近通道壁面附近流体速度变大,而靠近中心区域流体速度变小。此外湍流强度分量随流体加速而逐渐变小,随流体减速而逐渐增加。对于流向压力梯度驱动的周期性脉动流,横向脉动速度均方根分量u′滞后于流向脉动速度均方根分量v′,且二者都滞后于流速的变化;对于带定位格架的棒束通道,带有搅浑翼的定位格架强烈的交混作用极大地减小了流体加速度对棒束通道内速度分布和湍流强度带来的影响。实验结果有助于更加清晰地揭示脉动流在棒束通道中的作用机理。

     

    Abstract: The flow rate of the primary coolant in a nuclear reactor will fluctuate during accident conditions or in floating reactors that are influenced by inertial forces in the ocean. These fluctuations may have a substantial impact on the heat transfer by the primary coolant of the reactor. In this study, combined with phase-locked PIV technology and matching index refractive (MIR) technology, the instantaneous velocity in the rod bundle channel with and without spacer grid was measured under the pulsating flow. In addition, the phase averaged velocity and RMS component distribution of different phases were analyzed. The experimental results demonstrate that for the bare rod bundle the acceleration increases the fluid velocity near the channel wall. And RMS decreases as the fluid accelerates and increases as the flow rate decelerates. For pulsation flow driven by axial pressure gradient, the u′ lags behind the v′, and both of them lag behind the change of flow rate. The strong mixing effect on the spacer grid with mixing vane greatly reduces the influence of fluid acceleration on the velocity distribution and turbulence intensity in the rod bundle channel. The experimental results are helpful to understand the mechanism of pulsating flow in the rod bundle channel more clearly.

     

  • [1] 苏光辉. 轻水堆核电厂严重事故现象学[M]. 北京:国防工业出版社,2016.
    [2] 程坤,谭思超. 海洋条件下反应堆热工水力特性研究进展[J]. 哈尔滨工程大学学报,2019,40(4):655-662.CHENG Kun, TAN Sichao. Research progress of nuclear reactor thermalhydraulic characteristics under ocean conditions[J]. Journal of Harbin Engineering University, 2019, 40(4): 655-662(in Chinese).
    [3] RICHARDSON E G, TYLER E. The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established[J]. Proceedings of the Physical Society, 1929, 42(1): 1-15.
    [4] UCHIDA S. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe[J]. Zeitschrift für Angewandte Mathematik und Physik Zamp, 1956, 7(5): 403-422.
    [5] JAWORSKI A J, MAO Xiaoan, MAO Xuerui, et al. Entrance effects in the channels of the parallel plate stack in oscillatory flow conditions[J]. Experimental Thermal & Fluid Science, 2009, 33(3): 495-502.
    [6] OHMI M, IGUCHI M, URAHATA I. Transition to turbulence in a pulsatile pipe flow, Part 1: Wave forms and distribution of pulsatile velocities near transition region[J]. Bulletin of JSME, 1982, 25(200): 182-189.
    [7] FISHLER L S, BRODKEY R S. Transition, turbulence and oscillating flow in a pipe a visual study[J]. Experiments in Fluids, 1991, 11(6): 388-398.
    [8] 俞洋,汪昊楠,于楠,等. 基于激光多普勒测量的6×6棒束间湍流流动研究[J]. 原子能科学技术,2015,49(7):1200-1207.YU Yang, WANG Haonan, YU Nan, et al. Laser Doppler measurement on turbulent flow in 6×6 rod bundles[J]. Atomic Energy Science and Technology, 2015, 49(7): 1200-1207(in Chinese).
    [9] 陈仕龙,陈诚,曲文海,等. 带搅混格架5×5棒束流场的激光多普勒测量[J]. 核动力工程,2018,39(4):171-175.CHEN Shilong, CHEN Cheng, QU Wenhai, et al. Laser Doppler measurement of flow field in a 5×5 rod bundle with mixing vane grids[J]. Nuclear Power Engineering, 2018, 39(4): 171-175(in Chinese).
    [10] QI P, LI X, LI X, et al. Experimental investigation of the turbulent flow in a rod bundle channel with spacer grids[J]. Annals of Nuclear Energy, 2019, 130: 142-156.
    [11] LI X, MI Z, TAN S, et al. PIV study of velocity distribution and turbulence statistics in a rod bundle[J]. Annals of Nuclear Energy, 2018, 117: 305-317.
    [12] CONNER M E, HASSAN Y A, DOMINGUEZ-ONTIVEROS E E. Hydraulic benchmark data for PWR mixing vane grid[J]. Nuclear Engineering and Design, 2013, 264: 97-102.
    [13] MELLING A. Tracer particles and seeding for particle image velocimetry[J]. Measurement Science & Technology, 1997, 8(12): 1406.
    [14] NISHIO S. Uncertainty analysis and example for PIV measurements[C]∥Proceedings of 25th International Towing Tank Conference (ITTC). Fukuoka, Japan: The Japan Society of Mechanical Engineers, 2008.
    [15] QI P, LI X, QIU F, et al. Application of particle image velocimetry measurement technique to study pulsating flow in a rod bundle channel[J]. Experimental Thermal and Fluid Science, 2020, 113: 110047.
    [16] 俞胜之,阎昌琪,王建军,等. 摇摆对单相自然循环系统流动特性的影响分析[J]. 哈尔滨工程大学学报,2017,38(7):1065-1071.YU Shengzhi, YAN Changqi, WANG Jianjun, et al.Analysis of the effect of rolling motion on flow characteristics of a single-phase natural circulation system[J]. Journal of Harbin Engineering University, 2017, 38(7): 1065-1071(in Chinese).
    [17] XING D C, YAN C Q, SUN L C, et al. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts[J]. Nuclear Engineering and Design, 2012, 247(6): 221-229.
    [18] HE S, JACKSON J D. An experimental study of pulsating turbulent flow in a pipe[J]. European Journal of Mechanics B: Fluids, 2009, 28(2): 309-320.
    [19] QI P, LI X, LI X, et al. Experimental study on the resistance characteristics of the rod bundle channel with spacer grid under low-frequency pulsating flows[J]. Annals of Nuclear Energy, 2019, 131: 80-92.
    [20] 李兴,谭思超,祁沛垚,等. 棒束通道内定位格架搅混特性PIV可视化研究[J]. 原子能科学技术,2019,53(4):654-662.LI Xing, TAN Sichao, QI Peiyao, et al. Visualization experiment of mixing characteristic of spacer grid in rod bundle using PIV technique[J]. Atomic Energy Science and Technology, 2019, 53(4): 654-662(in Chinese).
    [21] RAMAPRIAN B R, TU S W. Fully developed periodic turbulent pipe flow, Part 2: The detailed structure of the flow[J]. Journal of Fluid Mechanics, 1983, 137: 59-81.
  • 期刊类型引用(2)

    1. 危华,谢翀,肖卫明,汪春宇. 反应堆顶盖腔室流场实验研究. 科技创新与应用. 2023(22): 19-22 . 百度学术
    2. 祁沛垚,李兴,邓坚,于晓勇,谭思超. 脉动流条件下棒束通道阻力特性研究. 原子能科学技术. 2021(05): 840-848 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  573
  • HTML全文浏览量:  1
  • PDF下载量:  953
  • 被引次数: 8
出版历程
  • 刊出日期:  2021-01-19

目录

    /

    返回文章
    返回