低活化马氏体钢限制性模压织构演化行为及力学性能研究

李萍, 宋杰, 盛杰, 严思梁, 薛克敏

李萍, 宋杰, 盛杰, 严思梁, 薛克敏. 低活化马氏体钢限制性模压织构演化行为及力学性能研究[J]. 原子能科学技术, 2021, 55(6): 1075-1082. DOI: 10.7538/yzk.2020.youxian.0447
引用本文: 李萍, 宋杰, 盛杰, 严思梁, 薛克敏. 低活化马氏体钢限制性模压织构演化行为及力学性能研究[J]. 原子能科学技术, 2021, 55(6): 1075-1082. DOI: 10.7538/yzk.2020.youxian.0447
LI Ping, SONG Jie, SHENG Jie, YAN Siliang, XUE Kemin. Texture Evolutionary Behavior and Mechanical Property Characterization of Low Activation Martensitic Steel with CGP[J]. Atomic Energy Science and Technology, 2021, 55(6): 1075-1082. DOI: 10.7538/yzk.2020.youxian.0447
Citation: LI Ping, SONG Jie, SHENG Jie, YAN Siliang, XUE Kemin. Texture Evolutionary Behavior and Mechanical Property Characterization of Low Activation Martensitic Steel with CGP[J]. Atomic Energy Science and Technology, 2021, 55(6): 1075-1082. DOI: 10.7538/yzk.2020.youxian.0447

低活化马氏体钢限制性模压织构演化行为及力学性能研究

Texture Evolutionary Behavior and Mechanical Property Characterization of Low Activation Martensitic Steel with CGP

  • 摘要: 利用低活化马氏体钢在500、600 ℃下进行了多道次限制性模压(CGP)实验,研究了不同温度下变形道次对其显微组织和力学性能的影响。结果表明:经3道次CGP变形后,低活化马氏体钢的平均晶粒尺寸从初始回火态的1.37 μm细化到0.88 μm;马氏体中形成了明显的(121)[012]、(011)[111]、(101)[111]织构,同时有(213)[111]织构出现,{112}{111}面织构的出现有效提升了材料的拉伸性能;铁素体中出现(012)[021]织构和明显的{013}〈113〉织构;抗拉强度与硬度显著上升,延伸率小幅降低。500 ℃下,抗拉强度经过1道次CGP变形后从初始态的586.31 MPa提升至693.01 MPa,3道次后又略下降至689.74 MPa;延伸率从初始态的18.59%降至12.13%。600 ℃下,抗拉强度经过1道次CGP变形后提升至685.97 MPa,3道次CGP变形后又略下降至679.30 MPa;延伸率降至15.62%。上述结果证明,CGP变形是提升低活化钢板力学性能的有效方法之一。

     

    Abstract: Super plastic deformation experiments of low activated Martensitic steel with multiple times of constrained groove pressing (CGP) at 500 ℃ and 600 ℃ were carried out, and the effects of deformation passes on the microstructure and mechanical properties of the steel were studied. The results show that the average grain size of the steel is refined from 1.37 μm in the initial tempering state to 0.88 μm. The content of large angle grain boundary changes slightly. After deformation, obvious (121)[012], (011)[111] and (101)[111] textures are formed in the steel, meanwhile, (213)[111] textures are formed, the appearance of {112}{111} texture in the steel effectively improves the tensile property of the material, (012)[021] textures are formed in ferrite, and the obvious {013}〈113〉 textures are formed in third pass. Among them, the appearance of {112}{111} plane texture effectively improves the tensile properties of the material. The tensile strength and hardness increase significantly, and the elongation rate decreases slightly. After deformation at 500 ℃, the tensile strength increases to 693.01 MPa after first pass, and then decreases to 689.74 MPa after third passes, and the elongation decreases from 18.59% in the initial state to 12.13%. After deformation at 600 ℃, the tensile strength increases to 685.97 MPa at first pass, and then decreases to 679.30 MPa after third pass. The elongation decreases to 15.62% after third pass. The above results prove that molding deformation is one of the effective methods to improve the mechanical properties of low activation steels.

     

  • [1] BALUC N, GELLES D S, JITSUKAWA S, et al. Status of reduced activation ferritic/martensitic steel development[J]. Journal of Nuclear Materials, 2007, 367-370: 33-41.
    [2] HUANG Q, LI C, LI Y, et al. Progress in development of China Low Activation Martensitic Steel for fusion application[J]. Journal of Nuclear Materials, 2007, 367-370: 142-146.
    [3] 王广春,朱杰,刘闪. 微细材料细晶处理方法及其研究发展[J]. 精密成形工程,2017,9(5):19-24.
    WANG Guangchun, ZHU Jie, LIU Shan. Grain refining methods and its research development of micro-size materials[J]. Journal of Netshape Forming Engineering, 2017, 9(5): 19-24(in Chinese).
    [4] KHODABAKHSHI F, KAZEMINEZHAD M, KOKABI A H. Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties[J]. Materials Science & Engineering, 2010, 527(16-17): 4043-4049.
    [5] YANNICK C, CYRIL L, SANDRINE G M, et al. Near-perfect elastoplasticity in pure nanocry stalline copper[J]. Science, 2003, 300: 310-311.
    [6] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51(4): 427-556.
    [7] HOSSEINI E, KAZEMINEZHAD M. Nanostructure and mechanical properties of 0-7 strained aluminum by CGP: XRD, TEM and tensile test[J]. Materials Science and Engineering A, 2009, 526(1-2): 219-224.
    [8] HOSSEINI E, KAZEMINEZHAD M, MANI A, et al. On the evolution of flow stress during constrained grove pressing of pure copper sheet[J]. Computational Materials Science, 2009, 45(4): 855-859.
    [9] HOSEINI-ATHAR M M, MAHMUDI R, BABU R P, et al. Microstructural evolution and superplastic behavior of a fine-grained Mg-Gd alloy processed by constrained groove pressing[J]. Materials Science and Engineering, 2019, 754: 390-399.
    [10] YANG K H, CHEN W Z. Tensile properties of 1060 Al alloy subjected to constrained groove pressing[J]. Advanced Materials Research, 2010, 129-131: 65-69.
    [11] HAJIZADEH K, EJTEMAEI S, EGHBALI B. Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing[J]. Applied Physics, 2017, 123(8): 33-41.
    [12] MOZAFARI J, KHODABAKHSHI F, ESKANDARI H, et al. Wear resistance and tribological features of ultra-fine-grained Al-Mg alloys processed by constrained groove pressing-cross route[J]. Journal of Materials Engineering and Performance, 2019(28): 1235-1252.
    [13] 梁萍. 纯铝/纯铜板材的限制性模压工艺研究[D]. 济南:山东大学,2013.
    [14] EDDAHBI M, MONGE M A, LEGUEY T, et al. Texture and mechanical properties of EUROFER 97 steel processed by ECAP[J]. Materials Science and Engineering A, 2011, 528(18): 5927-5934.
    [15] EDDAHBI M, REYES R D, MONGE M A, et al. Grain boundary misorientation and positron annihilation characteristics in steel Eurofer processed by equal channel angular pressing[J]. Journal of Materials Science, 2014, 49(19): 6722-6733.
    [16] FERNÁNDEZ P, EDDAHBI M, AUGER M A, et al. Microstructural and mechanical characteristics of EUROFER 97 processed by equal channel angular pressing[J]. Journal of Nuclear Materials, 2011, 417(1-3): 20-24.
    [17] KHAJEH-SALEHANI M, HAJIAN M, ASSEMPOUR A. Ideal orientations of BCC crystals under equibiaxial tension loading[J]. Mathematics and Mechanics of Solids, 2016, 21(8): 1026-1042.
    [18] 马慧君. 高强度低合金钢织构变化及其对力学性能的影响研究[D]. 哈尔滨:哈尔滨工程大学,2018.
  • 期刊类型引用(1)

    1. 李萍,王亚军,代记仁,田文春,薛克敏. 挤扭变形对低活化马氏体钢组织及蠕变性能的影响. 原子能科学技术. 2022(12): 2678-2688 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  101
  • HTML全文浏览量:  0
  • PDF下载量:  865
  • 被引次数: 1
出版历程
  • 刊出日期:  2021-06-19

目录

    /

    返回文章
    返回