基于PCA-GA-SVM的n/γ甄别方法研究

Study on n/γ Discrimination Method Based on PCA-GA-SVM

  • 摘要: 由于常用中子探测器对中子和γ射线均呈现敏感性,所以消除γ射线对中子测量的影响很有必要性。考虑到支持向量机(SVM)能实现二分类器功能,本文结合主成分分析法(PCA)、遗传算法(GA),将SVM应用在混合场n/γ的甄别工作中。通过PCA对特征值进行降维,避免SVM出现过拟合现象,同时通过GA迭代方式寻找SVM关键参数惩罚因子C和核函数参数g的最优值。对PCA-GA-SVM网络在n/γ甄别中的准确性进行验证后与电荷比较法及频域梯度分析法甄别结果进行对比。结果表明,经过PCA与GA优化后的SVM网络甄别精度提升显著,该方法可为混合场n/γ提供有效的甄别。

     

    Abstract: The commonly used scintillator detectors are sensitive to neutron and γ ray, and it is necessary to eliminate the influence of γ ray on neutron measurement. The support vector machine (SVM) can realize the function of two classifiers. In this paper, the SVM combining principal component analysis (PCA) and genetic algorithm (GA) was applied to particle discrimination in n/γ mixed field. PCA was used to reduce the dimensionality of eigenvalue to avoid SVM over-fitting. At the same time, GA found the optimal value of SVM key parameter penalty factor C and kernel function parameter g through iteration. The accuracy of PCA-GA-SVM in the discrimination of n/γ pulse waveform was verified and compared with the discrimination result of charge comparison method and frequency gradient analysis method. The results show that the discrimination accuracy of the SVM network optimized by PCA and GA is improved significantly. This method can provide effective discrimination for n/γ mixed field.

     

/

返回文章
返回