[1] |
ZINKLE S J, WAS G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758.
|
[2] |
GROSSBECK M L. Effect of radiation on strength and ductility of metals and alloys[M]∥Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2012: 99-122.
|
[3] |
ZINKLE S J, BUSBY J T. Structural materials for fission & fusion energy[J]. Materials Today, 2009, 12(11): 12-19.
|
[4] |
ZINKLE S J. Radiation-induced effects on microstructure[M]∥Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2012: 65-98.
|
[5] |
ODETTE G R, LUCAS G E. Embrittlement of nuclear reactor pressure vessels[J]. JOM Journal of the Minerals, Metals&Materials Society, 2001, 53(7): 18-22.
|
[6] |
ZINKLE S J, MATSUKAWA Y. Observation and analysis of defect cluster production and interactions with dislocations[J]. Journal of Nuclear Materials, 2004, 329: 88-96.
|
[7] |
ZINKLE S J, SINGH B N. Microstructure of neutron-irradiated iron before and after tensile deformation[J]. Journal of Nuclear Materials, 2006, 351(1-3): 269-284.
|
[8] |
MONNET G. Multiscale modeling of irradiation hardening: Application to important nuclear materials[J]. Journal of Nuclear Materials, 2018, 508: 609-627.
|
[9] |
庄茁,崔一南,高原,等. 亚微米尺度晶体反常规塑性行为的离散位错研究进展[J]. 力学进展,2011,41(6):647-667.ZHUANG Zhuo, CUI Yinan, GAO Yuan, et al. Advances in discrete dislocation mechanism on submicro atypical plasticity[J]. Advances in Mechanics, 2011, 41(6): 647-667(in Chinese).
|
[10] |
ARSENLIS A, RHEE M, HOMMES G, et al. A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron[J]. Acta Materialia, 2012, 60(9): 3748-3757.
|
[11] |
CUI Y, PO G, GHONIEM N. Does irradiation enhance or inhibit strain bursts at the submicron scale?[J]. Acta Materialia, 2017, 132: 285-297.
|
[12] |
CUI Y, PO G, GHONIEM N. Size-tuned plastic flow localization in irradiated materials at the submicron scale[J]. Physical Review Letters, 2018, 120(21): 215501.
|
[13] |
BULATOV V V, CAI W. Computer simulations of dislocations[M]. UK: Oxford University Press, 2006.
|
[14] |
ARSENLIS A, CAI W, TANG M, et al. Enabling strain hardening simulations with dislocation dynamics[J]. Modelling and Simulation in Materials Science and Engineering, 2007, 15(6): 553-595.
|
[15] |
GILLIS P P, KRATOCHVIL J. Dislocation acceleration[J]. Philosophical Magazine, 1970, 21: 425-432.
|
[16] |
OLMSTED D L, HECTOR L G, CURTIN W A, et al. Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys[J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13(3): 371-388.
|
[17] |
QUEYREAU S, MARIAN J, GILBERT M R, et al. Edge dislocation mobilities in bcc Fe obtained by molecular dynamics[J]. Physical Review B, 2011, 84(6): 064106.
|
[18] |
HULL D, BACON D J. Introduction to dislocations[M]. Amsterdam: Elsevier, 2011.
|
[19] |
BULATOV V V, HSIUNG L L, TANG M, et al. Dislocation multi-junctions and strain hardening[J]. Nature, 2006, 440: 1174-1178.
|
[20] |
HAGHIGHAT S H, SCHÄUBLIN R, RAABE D. Atomistic simulation of the a0〈100〉 binary junction formation and its unzipping in body-centered cubic iron[J]. Acta Materialia, 2014, 64: 24-32.
|
[21] |
DEVINCRE B, MADEC R, MONNET G, et al. Modeling crystal plasticity with dislocation dynamics simulations: The ‘microMegas’ code[M]∥Mechanics of Nanoobjects Presses Des. US: Presse Des Mines, 2011.
|
[22] |
GHONIEM N M, TONG S H, SUN L Z. Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation[J]. Physical Review B, 2000, 61(2): 913-927.
|
[23] |
HIRSCH P, SILCOX J, SMALLMAN R, et al. Dislocation loops in quenched aluminium[J]. Philosophical Magazine, 1958, 3(32): 897-908.
|
[24] |
LORETTO M, CLAREBROUGH L, SEGALL R. Stacking-fault tetrahedra in deformed face-centred cubic metals[J]. Philosophical Magazine, 1965, 11: 459-465.
|
[25] |
OSETSKY Y N, BACON D J. Atomic-level dislocation dynamics in irradiated metals[M]∥Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2012.
|
[26] |
MARIAN J, WIRTH B D, SCHÄUBLIN R, et al. MD modeling of defects in Fe and their interactions[J]. Journal of Nuclear Materials, 2003, 323(2-3): 181-191.
|
[27] |
BACON D J, OSETSKY Y N, RONG Z. Computer simulation of reactions between an edge dislocation and glissile self-interstitial clusters in iron[J]. Philosophical Magazine, 2006, 86(25-26): 3921-3936.
|
[28] |
OSETSKY Y N, RODNEY D, BACON D J. Atomic-scale study of dislocation-stacking fault tetrahedron interactions, Part Ⅰ: Mechanisms[J]. Philosophical Magazine, 2006, 86(16): 2295-2313.
|
[29] |
LIU X Y, BINER S B. Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe[J]. Scripta Materialia, 2008, 59(1): 51-54.
|
[30] |
TERENTYEV D, GRAMMATIKOPOULOS P, BACON D J, et al. Simulation of the interaction between an edge dislocation and 〈100〉 interstitial dislocation loop in alpha-iron[J]. Acta Materialia, 2008, 56(18): 5034-5046.
|
[31] |
TERENTYEV D, BACON D J, OSETSKY Y N. Reactions between a 1/2〈111〉 screw dislocation and 〈100〉 interstitial dislocation loops in alpha-iron modelled at atomic scale[J]. Philosophical Magazine, 2010, 90(7-8): 1019-1033.
|
[32] |
DROUET J, DUPUY L, ONIMUS F, et al. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium[J]. Journal of Nuclear Materials, 2014, 449(1-3): 252-262.
|
[33] |
DROUET J, DUPUY L, ONIMUS F, et al. A direct comparison between in-situ transmission electron microscopy observations and dislocation dynamics simulations of interaction between dislocation and irradiation induced loop in a zirconium alloy[J]. Scripta Materialia, 2016, 119: 71-75.
|
[34] |
SHI X J, DUPUY L, DEVINCRE B, et al. Interaction of 〈100〉 dislocation loops with dislocations studied by dislocation dynamics in alpha-iron[J]. Journal of Nuclear Materials, 2015, 460: 37-43.
|
[35] |
MARTINEZ E, MARIAN J, ARSENLIS A, et al. Atomistically informed dislocation dynamics in fcc crystals[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(3): 869-895.
|
[36] |
MARTINEZ E, MARIAN J, ARSENLIS A, et al. Dislocation dynamics study of the strength of stacking fault tetrahedra, Part Ⅰ: Interactions with screw dislocations[J]. Philosophical Magazine, 2008, 88(6): 809-840.
|
[37] |
MARTINEZ E, MARIAN J, PERLADO J M. A dislocation dynamics study of the strength of stacking fault tetrahedra, Part Ⅱ: Interactions with mixed and edge dislocations[J]. Philosophical Magazine, 2008, 88(6): 841-863.
|
[38] |
de LARUBIA T D, ZBIB H M, KHRAISHI T A, et al. Multiscale modelling of plastic flow localization in irradiated materials[J]. Nature, 2000, 406: 871-874.
|
[39] |
GHONIEM N M, TONG S H, SINGH B N, et al. Dislocation interaction with radiation-induced defect clusters and plastic flow localization in fcc metals[J]. Philosophical Magazine, 2001, 81(11): 2743-2764.
|
[40] |
KHRAISHI T A, ZBIB H M, de LA-RUBIA T D, et al. Modelling of irradiation-induced hardening in metals using dislocation dynamics[J]. Philosophical Magazine Letters, 2001, 81(9): 583-593.
|
[41] |
KHRAISHI T A, ZBIB H M, de LA-RUBIA T D, et al. Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations[J]. Metallurgical and Materials Transactions B, 2002, 33(2): 285-296.
|
[42] |
NOGARET T, RODNEY D, FIVEL M, et al. Clear band formation simulated by dislocation dynamics: Role of helical turns and pile-ups[J]. Journal of Nuclear Materials, 2008, 380(1-3): 22-29.
|
[43] |
GURURAJ K, ROBERTSON C, FIVEL M. Post-irradiation plastic deformation in Fe grains investigated by means of 3D dislocation dynamics simulations[J]. Journal of Nuclear Materials, 2015, 459: 194-204.
|
[44] |
GURURAJ K, ROBERTSON C, FIVEL M. Channel formation and multiplication in irradiated FCC metals: A 3D dislocation dynamics investigation[J]. Philosophical Magazine, 2015, 95(12): 1368-1389.
|
[45] |
TERENTYEV D, MONNET G, GRIGOREV P. Transfer of molecular dynamics data to dislocation dynamics to assess dislocation-dislocation loop interaction in iron[J]. Scripta Mater, 2013, 69(8): 578-581.
|
[46] |
CUI Y, PO G, GHONIEM N M. A coupled dislocation dynamics-continuum barrier field model with application to irradiated materials[J]. International Journal of Plasticity, 2018, 104: 54-67.
|
[47] |
ARGON A. Strengthening mechanisms in crystal plasticity[M]. UK: Oxford University Press, 2008.
|
[48] |
HUANG M, ZHAO L G, TONG J. Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys[J]. International Journal of Plasticity, 2012, 28(1): 141-158.
|
[49] |
RAWLINGS M J S, DUNAND D C. Dislocation dynamics modeling of precipitation strengthening in Fe-Ni-Al-Cr ferritic superalloys[J]. Journal of Materials Research, 2017, 32(22): 4241-4253.
|
[50] |
SHIN C S, FIVEL M C, VERDIER M, et al. Dislocation-impenetrable precipitate interaction: A three-dimensional discrete dislocation dynamics analysis[J]. Philosophical Magazine, 2003, 83: 3691-3704.
|
[51] |
SANTOS-GUEMES R, ESTEBAN-MANZANARES G, PAPADIMITRIOU I, et al. Discrete dislocation dynamics simulations of dislocation-theta’ precipitate interaction in Al-Cu alloys[J]. Journal of the Mechanics and Physics of Solids, 2018, 118: 228-244.
|
[52] |
SANTOS-GUEMES R, BELLON B, ESTEBAN-MANZANARES G, et al. Multiscale modelling of precipitation hardening in Al-Cu alloys: Dislocation dynamics simulations and experimental validation[J]. Acta Materialia, 2020, 188: 475-485.
|
[53] |
FAN H D, NGAN A H W, GAN K F, et al. Origin of double-peak precipitation hardening in metallic alloys[J]. International Journal of Plasticity, 2018, 111: 152-167.
|
[54] |
LEHTINEN A, GRANBERG F, LAURSON L, et al. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations[J]. Physical Review E, 2016, 93(1): 013309.
|
[55] |
BAKÓ B, WEYGAND D, SAMARAS M, et al. Discrete dislocation dynamics simulations of dislocation interactions with Y2O3 particles in PM2000 single crystals[J]. Philosophical Magazine, 2007, 87: 3645-3656.
|
[56] |
QUEYREAU S, MONNET G, DEVINCRE B. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations[J]. Acta Materialia, 2010, 58(17): 5586-5595.
|
[57] |
OSETSKY Y N, BACON D J. Comparison of void strengthening in fcc and bcc metals: Large-scale atomic-level modelling[J]. Materials Science and Engineering A, 2005, 400: 374-377.
|
[58] |
SCHÄUBLIN R, CHIU Y L. Effect of helium on irradiation-induced hardening of iron: A simulation point of view[J]. Journal of Nuclear Materials, 2007, 362(2-3): 152-160.
|
[59] |
HAGHIGHAT S M H, SCHÄUBLIN R. Molecular dynamics modeling of cavity strengthening in irradiated iron[J]. Journal of Computer-Aided Materials Design, 2007, 14: 191-201.
|
[60] |
HAGHIGHAT S M H, LUCAS G, SCHÄUBLIN R. Atomistic simulation of He bubble in Fe as obstacle to dislocation[C]∥Iop Conference Series: Materials Science and Engineering. [S. l.]: [s. n.], 2009.
|
[61] |
HAGHIGHAT S M H, FIVEL M C, FIKAR J, et al. Dislocation-void interaction in Fe: A comparison between molecular dynamics and dislocation dynamics[J]. Journal of Nuclear Materials, 2009, 386: 102-105.
|
[62] |
HAGHIGHAT S M H, SCHÄUBLIN R. Influence of the stress field due to pressurized nanometric He bubbles on the mobility of an edge dislocation in iron[J]. Philosophical Magazine, 2010, 90(7-8): 1075-1100.
|
[63] |
OSETSKY Y N, BACON D J. Atomic-scale mechanisms of void hardening in bcc and fcc metals[J]. Philosophical Magazine, 2010, 90(7-8): 945-961.
|
[64] |
GRAMMATIKOPOULOS P, BACON D J, OSETSKY Y N. The influence of interaction geometry on the obstacle strength of voids and copper precipitates in iron[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19(1): 015004.
|
[65] |
OSETSKY Y N, STOLLER R E. Atomic-scale mechanisms of helium bubble hardening in iron[J]. Journal of Nuclear Materials, 2015, 465: 448-454.
|
[66] |
ABE Y, TSURU T, SHI S, et al. Effect of the dilation caused by helium bubbles on edge dislocation motion in iron: Molecular dynamics simulation[J]. Journal of Nuclear Science and Technology, 2016, 53(10): 1528-1534.
|
[67] |
DOIHARA K, OKITA T, ITAKURA M, et al. Atomic simulations to evaluate effects of stacking fault energy on interactions between edge dislocation and spherical void in face-centred cubic metals[J]. Philosophical Magazine, 2018, 98(22): 2061-2076.
|
[68] |
HAGHIGHAT S M H, FIKAR J, SCHÄUBLIN R. Effect of interatomic potential on the behavior of dislocation-defect interaction simulation in α-Fe[J]. Journal of Nuclear Materials, 2008, 382(2-3): 147-153.
|
[69] |
GIESSEN E V D, NEEDLEMAN A. Discrete dislocation plasticity: A simple planar model[J]. Modelling and Simulation in Materials Science and Engineering, 1995, 3(5): 689-735.
|
[70] |
CUI Y, LIU Z L, ZHUANG Z. Quantitative investigations on dislocation based discrete-continuous model of crystal plasticity at submicron scale[J]. International Journal of Plasticity, 2015, 69: 54-72.
|
[71] |
AKARAPU S, ZBIB H M, BAHR D F. Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression[J]. International Journal of Plasticity, 2010, 26(2): 239-257.
|
[72] |
SCATTERGOOD R, BACON D. The strengthening effect of voids[J]. Acta Metallurgica, 1982, 30(8): 1665-1677.
|
[73] |
CRONE J C, MUNDAY L B, KNAP J. Capturing the effects of free surfaces on void strengthening with dislocation dynamics[J]. Acta Materialia, 2015, 101: 40-47.
|
[74] |
KUMAR N N, DURGAPRASAD P V, DUTTA B K, et al. Modeling of radiation hardening in ferritic/martensitic steel using multi-scale approach[J]. Computational Materials Science, 2012, 53(1): 258-267.
|
[75] |
SOBIE C, BERTIN N, CAPOLUNGO L. Analysis of obstacle hardening using dislocation dynamics: Application to irradiation-induced defects[J]. Metallurgical and Materials Transactions A, 2015, 46a(8): 3761-3772.
|
[76] |
WAS G S. Fundamentals of radiation materials science[M]. Berlin: Springer, 2017.
|
[77] |
BACON D, KOCKS U, SCATTERGOOD R. The effect of dislocation self-interaction on the Orowan stress[J]. Philosophical Magazine, 1973, 28(6): 1241-1263.
|
[78] |
KROUPA F, HIRSCH P. Elastic interaction between prismatic dislocation loops and straight dislocations[J]. Discussions of the Faraday Society, 1964, 38: 49-55.
|
[79] |
SINGH B N, FOREMAN A J E, TRINKAUS H. Radiation hardening revisited: Role of intracascade clustering[J]. Journal of Nuclear Materials, 1997, 249(2-3): 103-115.
|
[80] |
SINGH B N, GHONIEM N M, TRINKAUS H. Modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions[J]. Journal of Nuclear Materials, 2002, 307: 159-170.
|
[81] |
VICTORIA M, BALUC N, BAILAT C, et al. The microstructure and associated tensile properties of irradiated fcc and bcc metals[J]. Journal of Nuclear Materials, 2000, 276: 114-122.
|
[82] |
MONNET G. New insights into radiation hardening in face-centered cubic alloys[J]. Scripta Materialia, 2015, 100: 24-27.
|
[83] |
MONNET G. Investigation of precipitation hardening by dislocation dynamics simulations[J]. Philosophical Magazine, 2006, 86(36): 5927-5941.
|
[84] |
JIAO Z, HESTERBERG J, WAS G S. Insights into the sources of irradiation hardening in a neutron irradiated 304L stainless steel following post-irradiation annealing[J]. Journal of Nuclear Materials, 2019, 526: 151754.
|