辐照硬化位错动力学模拟的研究进展

吴恺慆, 史佳庆, 刘桂森, 沈耀

吴恺慆, 史佳庆, 刘桂森, 沈耀. 辐照硬化位错动力学模拟的研究进展[J]. 原子能科学技术, 2021, 55(1): 94-107. DOI: 10.7538/yzk.2020.youxian.0531
引用本文: 吴恺慆, 史佳庆, 刘桂森, 沈耀. 辐照硬化位错动力学模拟的研究进展[J]. 原子能科学技术, 2021, 55(1): 94-107. DOI: 10.7538/yzk.2020.youxian.0531
WU Kaitao, SHI Jiaqing, LIU Guisen, SHEN Yao. Progress of Dislocation Dynamics Simulation on Irradiation Hardening[J]. Atomic Energy Science and Technology, 2021, 55(1): 94-107. DOI: 10.7538/yzk.2020.youxian.0531
Citation: WU Kaitao, SHI Jiaqing, LIU Guisen, SHEN Yao. Progress of Dislocation Dynamics Simulation on Irradiation Hardening[J]. Atomic Energy Science and Technology, 2021, 55(1): 94-107. DOI: 10.7538/yzk.2020.youxian.0531

辐照硬化位错动力学模拟的研究进展

Progress of Dislocation Dynamics Simulation on Irradiation Hardening

  • 摘要: 辐照硬化是金属材料的辐照效应之一,开展辐照硬化机理研究有助于设计可靠的反应堆结构材料。辐照产生的缺陷会对位错运动造成阻碍,被认为是辐照硬化的主要原因。近年来快速发展的位错动力学模拟方法为材料的微观组织变化和宏观力学性能之间建立起了桥梁,被广泛用于辐照硬化机理研究。对于一些辐照缺陷如位错环和层错四面体,位错动力学软件已能模拟它们对位错网络演化以及宏观力学响应的影响,使辐照硬化的定量预测成为可能。本文从位错动力学模型、不同类型辐照缺陷硬化效应的位错动力学模拟以及辐照硬化理论模型发展三个方面,综述了辐照硬化位错动力学模拟的研究进展,并展望该研究领域的主要科学问题。

     

    Abstract: Irradiation hardening is one of the most common effects in irradiated metallic material. Investigations on irradiation hardening mechanisms are of great significance to design reliable structural materials for nuclear reactors. Irradiation induced defects act as obstacles to dislocation motion which is believed as the main reason for irradiation hardening. In recent years, the rapid development of dislocation dynamics simulation method built a bridge connecting the microstructure and the macroscopic mechanical properties and widely applied to investigate the mechanisms of irradiation hardening. For some irradiation defects such as dislocation loop and stacking fault tetrahedron, dislocation dynamics simulation is capable of capturing their influences on the evolution of dislocation network and the macroscopic mechanical response, making it possible for quantitative prediction of the irradiation hardening. In this paper, the progress of dislocation dynamics simulation on irradiation hardening was reviewed from three aspects: The basic dislocation dynamics model, the recent dislocation dynamics simulations on typical irradiation defects induced hardening and the development of the theoretical models of irradiation hardening. Some scientific problems for future research were also presented.

     

  • [1] ZINKLE S J, WAS G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758.
    [2] GROSSBECK M L. Effect of radiation on strength and ductility of metals and alloys[M]∥Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2012: 99-122.
    [3] ZINKLE S J, BUSBY J T. Structural materials for fission & fusion energy[J]. Materials Today, 2009, 12(11): 12-19.
    [4] ZINKLE S J. Radiation-induced effects on microstructure[M]∥Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2012: 65-98.
    [5] ODETTE G R, LUCAS G E. Embrittlement of nuclear reactor pressure vessels[J]. JOM Journal of the Minerals, Metals&Materials Society, 2001, 53(7): 18-22.
    [6] ZINKLE S J, MATSUKAWA Y. Observation and analysis of defect cluster production and interactions with dislocations[J]. Journal of Nuclear Materials, 2004, 329: 88-96.
    [7] ZINKLE S J, SINGH B N. Microstructure of neutron-irradiated iron before and after tensile deformation[J]. Journal of Nuclear Materials, 2006, 351(1-3): 269-284.
    [8] MONNET G. Multiscale modeling of irradiation hardening: Application to important nuclear materials[J]. Journal of Nuclear Materials, 2018, 508: 609-627.
    [9] 庄茁,崔一南,高原,等. 亚微米尺度晶体反常规塑性行为的离散位错研究进展[J]. 力学进展,2011,41(6):647-667.ZHUANG Zhuo, CUI Yinan, GAO Yuan, et al. Advances in discrete dislocation mechanism on submicro atypical plasticity[J]. Advances in Mechanics, 2011, 41(6): 647-667(in Chinese).
    [10] ARSENLIS A, RHEE M, HOMMES G, et al. A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron[J]. Acta Materialia, 2012, 60(9): 3748-3757.
    [11] CUI Y, PO G, GHONIEM N. Does irradiation enhance or inhibit strain bursts at the submicron scale?[J]. Acta Materialia, 2017, 132: 285-297.
    [12] CUI Y, PO G, GHONIEM N. Size-tuned plastic flow localization in irradiated materials at the submicron scale[J]. Physical Review Letters, 2018, 120(21): 215501.
    [13] BULATOV V V, CAI W. Computer simulations of dislocations[M]. UK: Oxford University Press, 2006.
    [14] ARSENLIS A, CAI W, TANG M, et al. Enabling strain hardening simulations with dislocation dynamics[J]. Modelling and Simulation in Materials Science and Engineering, 2007, 15(6): 553-595.
    [15] GILLIS P P, KRATOCHVIL J. Dislocation acceleration[J]. Philosophical Magazine, 1970, 21: 425-432.
    [16] OLMSTED D L, HECTOR L G, CURTIN W A, et al. Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys[J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13(3): 371-388.
    [17] QUEYREAU S, MARIAN J, GILBERT M R, et al. Edge dislocation mobilities in bcc Fe obtained by molecular dynamics[J]. Physical Review B, 2011, 84(6): 064106.
    [18] HULL D, BACON D J. Introduction to dislocations[M]. Amsterdam: Elsevier, 2011.
    [19] BULATOV V V, HSIUNG L L, TANG M, et al. Dislocation multi-junctions and strain hardening[J]. Nature, 2006, 440: 1174-1178.
    [20] HAGHIGHAT S H, SCHÄUBLIN R, RAABE D. Atomistic simulation of the a0〈100〉 binary junction formation and its unzipping in body-centered cubic iron[J]. Acta Materialia, 2014, 64: 24-32.
    [21] DEVINCRE B, MADEC R, MONNET G, et al. Modeling crystal plasticity with dislocation dynamics simulations: The ‘microMegas’ code[M]∥Mechanics of Nanoobjects Presses Des. US: Presse Des Mines, 2011.
    [22] GHONIEM N M, TONG S H, SUN L Z. Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation[J]. Physical Review B, 2000, 61(2): 913-927.
    [23] HIRSCH P, SILCOX J, SMALLMAN R, et al. Dislocation loops in quenched aluminium[J]. Philosophical Magazine, 1958, 3(32): 897-908.
    [24] LORETTO M, CLAREBROUGH L, SEGALL R. Stacking-fault tetrahedra in deformed face-centred cubic metals[J]. Philosophical Magazine, 1965, 11: 459-465.
    [25] OSETSKY Y N, BACON D J. Atomic-level dislocation dynamics in irradiated metals[M]∥Comprehensive Nuclear Materials. Amsterdam: Elsevier, 2012.
    [26] MARIAN J, WIRTH B D, SCHÄUBLIN R, et al. MD modeling of defects in Fe and their interactions[J]. Journal of Nuclear Materials, 2003, 323(2-3): 181-191.
    [27] BACON D J, OSETSKY Y N, RONG Z. Computer simulation of reactions between an edge dislocation and glissile self-interstitial clusters in iron[J]. Philosophical Magazine, 2006, 86(25-26): 3921-3936.
    [28] OSETSKY Y N, RODNEY D, BACON D J. Atomic-scale study of dislocation-stacking fault tetrahedron interactions, Part Ⅰ: Mechanisms[J]. Philosophical Magazine, 2006, 86(16): 2295-2313.
    [29] LIU X Y, BINER S B. Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe[J]. Scripta Materialia, 2008, 59(1): 51-54.
    [30] TERENTYEV D, GRAMMATIKOPOULOS P, BACON D J, et al. Simulation of the interaction between an edge dislocation and 〈100〉 interstitial dislocation loop in alpha-iron[J]. Acta Materialia, 2008, 56(18): 5034-5046.
    [31] TERENTYEV D, BACON D J, OSETSKY Y N. Reactions between a 1/2〈111〉 screw dislocation and 〈100〉 interstitial dislocation loops in alpha-iron modelled at atomic scale[J]. Philosophical Magazine, 2010, 90(7-8): 1019-1033.
    [32] DROUET J, DUPUY L, ONIMUS F, et al. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium[J]. Journal of Nuclear Materials, 2014, 449(1-3): 252-262.
    [33] DROUET J, DUPUY L, ONIMUS F, et al. A direct comparison between in-situ transmission electron microscopy observations and dislocation dynamics simulations of interaction between dislocation and irradiation induced loop in a zirconium alloy[J]. Scripta Materialia, 2016, 119: 71-75.
    [34] SHI X J, DUPUY L, DEVINCRE B, et al. Interaction of 〈100〉 dislocation loops with dislocations studied by dislocation dynamics in alpha-iron[J]. Journal of Nuclear Materials, 2015, 460: 37-43.
    [35] MARTINEZ E, MARIAN J, ARSENLIS A, et al. Atomistically informed dislocation dynamics in fcc crystals[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(3): 869-895.
    [36] MARTINEZ E, MARIAN J, ARSENLIS A, et al. Dislocation dynamics study of the strength of stacking fault tetrahedra, Part Ⅰ: Interactions with screw dislocations[J]. Philosophical Magazine, 2008, 88(6): 809-840.
    [37] MARTINEZ E, MARIAN J, PERLADO J M. A dislocation dynamics study of the strength of stacking fault tetrahedra, Part Ⅱ: Interactions with mixed and edge dislocations[J]. Philosophical Magazine, 2008, 88(6): 841-863.
    [38] de LARUBIA T D, ZBIB H M, KHRAISHI T A, et al. Multiscale modelling of plastic flow localization in irradiated materials[J]. Nature, 2000, 406: 871-874.
    [39] GHONIEM N M, TONG S H, SINGH B N, et al. Dislocation interaction with radiation-induced defect clusters and plastic flow localization in fcc metals[J]. Philosophical Magazine, 2001, 81(11): 2743-2764.
    [40] KHRAISHI T A, ZBIB H M, de LA-RUBIA T D, et al. Modelling of irradiation-induced hardening in metals using dislocation dynamics[J]. Philosophical Magazine Letters, 2001, 81(9): 583-593.
    [41] KHRAISHI T A, ZBIB H M, de LA-RUBIA T D, et al. Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations[J]. Metallurgical and Materials Transactions B, 2002, 33(2): 285-296.
    [42] NOGARET T, RODNEY D, FIVEL M, et al. Clear band formation simulated by dislocation dynamics: Role of helical turns and pile-ups[J]. Journal of Nuclear Materials, 2008, 380(1-3): 22-29.
    [43] GURURAJ K, ROBERTSON C, FIVEL M. Post-irradiation plastic deformation in Fe grains investigated by means of 3D dislocation dynamics simulations[J]. Journal of Nuclear Materials, 2015, 459: 194-204.
    [44] GURURAJ K, ROBERTSON C, FIVEL M. Channel formation and multiplication in irradiated FCC metals: A 3D dislocation dynamics investigation[J]. Philosophical Magazine, 2015, 95(12): 1368-1389.
    [45] TERENTYEV D, MONNET G, GRIGOREV P. Transfer of molecular dynamics data to dislocation dynamics to assess dislocation-dislocation loop interaction in iron[J]. Scripta Mater, 2013, 69(8): 578-581.
    [46] CUI Y, PO G, GHONIEM N M. A coupled dislocation dynamics-continuum barrier field model with application to irradiated materials[J]. International Journal of Plasticity, 2018, 104: 54-67.
    [47] ARGON A. Strengthening mechanisms in crystal plasticity[M]. UK: Oxford University Press, 2008.
    [48] HUANG M, ZHAO L G, TONG J. Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys[J]. International Journal of Plasticity, 2012, 28(1): 141-158.
    [49] RAWLINGS M J S, DUNAND D C. Dislocation dynamics modeling of precipitation strengthening in Fe-Ni-Al-Cr ferritic superalloys[J]. Journal of Materials Research, 2017, 32(22): 4241-4253.
    [50] SHIN C S, FIVEL M C, VERDIER M, et al. Dislocation-impenetrable precipitate interaction: A three-dimensional discrete dislocation dynamics analysis[J]. Philosophical Magazine, 2003, 83: 3691-3704.
    [51] SANTOS-GUEMES R, ESTEBAN-MANZANARES G, PAPADIMITRIOU I, et al. Discrete dislocation dynamics simulations of dislocation-theta’ precipitate interaction in Al-Cu alloys[J]. Journal of the Mechanics and Physics of Solids, 2018, 118: 228-244.
    [52] SANTOS-GUEMES R, BELLON B, ESTEBAN-MANZANARES G, et al. Multiscale modelling of precipitation hardening in Al-Cu alloys: Dislocation dynamics simulations and experimental validation[J]. Acta Materialia, 2020, 188: 475-485.
    [53] FAN H D, NGAN A H W, GAN K F, et al. Origin of double-peak precipitation hardening in metallic alloys[J]. International Journal of Plasticity, 2018, 111: 152-167.
    [54] LEHTINEN A, GRANBERG F, LAURSON L, et al. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations[J]. Physical Review E, 2016, 93(1): 013309.
    [55] BAKÓ B, WEYGAND D, SAMARAS M, et al. Discrete dislocation dynamics simulations of dislocation interactions with Y2O3 particles in PM2000 single crystals[J]. Philosophical Magazine, 2007, 87: 3645-3656.
    [56] QUEYREAU S, MONNET G, DEVINCRE B. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations[J]. Acta Materialia, 2010, 58(17): 5586-5595.
    [57] OSETSKY Y N, BACON D J. Comparison of void strengthening in fcc and bcc metals: Large-scale atomic-level modelling[J]. Materials Science and Engineering A, 2005, 400: 374-377.
    [58] SCHÄUBLIN R, CHIU Y L. Effect of helium on irradiation-induced hardening of iron: A simulation point of view[J]. Journal of Nuclear Materials, 2007, 362(2-3): 152-160.
    [59] HAGHIGHAT S M H, SCHÄUBLIN R. Molecular dynamics modeling of cavity strengthening in irradiated iron[J]. Journal of Computer-Aided Materials Design, 2007, 14: 191-201.
    [60] HAGHIGHAT S M H, LUCAS G, SCHÄUBLIN R. Atomistic simulation of He bubble in Fe as obstacle to dislocation[C]∥Iop Conference Series: Materials Science and Engineering. [S. l.]: [s. n.], 2009.
    [61] HAGHIGHAT S M H, FIVEL M C, FIKAR J, et al. Dislocation-void interaction in Fe: A comparison between molecular dynamics and dislocation dynamics[J]. Journal of Nuclear Materials, 2009, 386: 102-105.
    [62] HAGHIGHAT S M H, SCHÄUBLIN R. Influence of the stress field due to pressurized nanometric He bubbles on the mobility of an edge dislocation in iron[J]. Philosophical Magazine, 2010, 90(7-8): 1075-1100.
    [63] OSETSKY Y N, BACON D J. Atomic-scale mechanisms of void hardening in bcc and fcc metals[J]. Philosophical Magazine, 2010, 90(7-8): 945-961.
    [64] GRAMMATIKOPOULOS P, BACON D J, OSETSKY Y N. The influence of interaction geometry on the obstacle strength of voids and copper precipitates in iron[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19(1): 015004.
    [65] OSETSKY Y N, STOLLER R E. Atomic-scale mechanisms of helium bubble hardening in iron[J]. Journal of Nuclear Materials, 2015, 465: 448-454.
    [66] ABE Y, TSURU T, SHI S, et al. Effect of the dilation caused by helium bubbles on edge dislocation motion in iron: Molecular dynamics simulation[J]. Journal of Nuclear Science and Technology, 2016, 53(10): 1528-1534.
    [67] DOIHARA K, OKITA T, ITAKURA M, et al. Atomic simulations to evaluate effects of stacking fault energy on interactions between edge dislocation and spherical void in face-centred cubic metals[J]. Philosophical Magazine, 2018, 98(22): 2061-2076.
    [68] HAGHIGHAT S M H, FIKAR J, SCHÄUBLIN R. Effect of interatomic potential on the behavior of dislocation-defect interaction simulation in α-Fe[J]. Journal of Nuclear Materials, 2008, 382(2-3): 147-153.
    [69] GIESSEN E V D, NEEDLEMAN A. Discrete dislocation plasticity: A simple planar model[J]. Modelling and Simulation in Materials Science and Engineering, 1995, 3(5): 689-735.
    [70] CUI Y, LIU Z L, ZHUANG Z. Quantitative investigations on dislocation based discrete-continuous model of crystal plasticity at submicron scale[J]. International Journal of Plasticity, 2015, 69: 54-72.
    [71] AKARAPU S, ZBIB H M, BAHR D F. Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression[J]. International Journal of Plasticity, 2010, 26(2): 239-257.
    [72] SCATTERGOOD R, BACON D. The strengthening effect of voids[J]. Acta Metallurgica, 1982, 30(8): 1665-1677.
    [73] CRONE J C, MUNDAY L B, KNAP J. Capturing the effects of free surfaces on void strengthening with dislocation dynamics[J]. Acta Materialia, 2015, 101: 40-47.
    [74] KUMAR N N, DURGAPRASAD P V, DUTTA B K, et al. Modeling of radiation hardening in ferritic/martensitic steel using multi-scale approach[J]. Computational Materials Science, 2012, 53(1): 258-267.
    [75] SOBIE C, BERTIN N, CAPOLUNGO L. Analysis of obstacle hardening using dislocation dynamics: Application to irradiation-induced defects[J]. Metallurgical and Materials Transactions A, 2015, 46a(8): 3761-3772.
    [76] WAS G S. Fundamentals of radiation materials science[M]. Berlin: Springer, 2017.
    [77] BACON D, KOCKS U, SCATTERGOOD R. The effect of dislocation self-interaction on the Orowan stress[J]. Philosophical Magazine, 1973, 28(6): 1241-1263.
    [78] KROUPA F, HIRSCH P. Elastic interaction between prismatic dislocation loops and straight dislocations[J]. Discussions of the Faraday Society, 1964, 38: 49-55.
    [79] SINGH B N, FOREMAN A J E, TRINKAUS H. Radiation hardening revisited: Role of intracascade clustering[J]. Journal of Nuclear Materials, 1997, 249(2-3): 103-115.
    [80] SINGH B N, GHONIEM N M, TRINKAUS H. Modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions[J]. Journal of Nuclear Materials, 2002, 307: 159-170.
    [81] VICTORIA M, BALUC N, BAILAT C, et al. The microstructure and associated tensile properties of irradiated fcc and bcc metals[J]. Journal of Nuclear Materials, 2000, 276: 114-122.
    [82] MONNET G. New insights into radiation hardening in face-centered cubic alloys[J]. Scripta Materialia, 2015, 100: 24-27.
    [83] MONNET G. Investigation of precipitation hardening by dislocation dynamics simulations[J]. Philosophical Magazine, 2006, 86(36): 5927-5941.
    [84] JIAO Z, HESTERBERG J, WAS G S. Insights into the sources of irradiation hardening in a neutron irradiated 304L stainless steel following post-irradiation annealing[J]. Journal of Nuclear Materials, 2019, 526: 151754.
  • 期刊类型引用(3)

    1. 宋馨怡,刘秀波,孟元,周安,张世宏. 基于分子动力学模拟的多主元合金滑动摩擦学行为研究. 润滑与密封. 2024(05): 36-44 . 百度学术
    2. 贾丽霞,王东杰,贺新福,吴石,杨文. 奥氏体不锈钢辐照脆化预测模型建立及验证. 原子能科学技术. 2024(08): 1635-1645 . 本站查看
    3. 滕明航,贺新福,豆艳坤,王东杰,贾丽霞. FeCu模型合金中Cu析出物导致硬化的位错动力学研究. 原子能科学技术. 2021(07): 1153-1162 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  817
  • HTML全文浏览量:  1
  • PDF下载量:  1111
  • 被引次数: 3
出版历程
  • 刊出日期:  2021-01-19

目录

    /

    返回文章
    返回