[1] |
云桂春,成徐州. 压水反应堆水化学[M]. 哈尔滨:哈尔滨工程大学出版社,2009:59-91.
|
[2] |
刘侠和,吴欣强,韩恩厚. 轻水堆结构材料在加锌水中的腐蚀行为研究状况与进展[J]. 腐蚀科学与防护技术,2011,23(4):287-292. LIU Xiahe, WU Xinqiang, HAN Enhou. Status and progress on study of corrosion behavior of structural materials in Zninjected waters for LWRs[J]. Corrosion Science and Protection Technology, 2011, 23(4): 287-292(in Chinese).
|
[3] |
姜苏青,张乐福. 加锌对镍基690合金均匀腐蚀影响的XPS分析[J]. 原子能科学技术,2012,46(3):268-271. JIANG Suqing, ZHANG Lefu. XPS analysis of zinc injection effects on general corrosion of nickel-base alloy 690[J]. Atomic Energy Science and Technology, 2012, 46(3): 268-271(in Chinese).
|
[4] |
姜苏青. 注锌对压水堆核电站一回路结构材料腐蚀行为影响的研究[D]. 上海:上海交通大学,2011.
|
[5] |
王力. 加锌对一回路材料氧化膜结构影响及其机理研究[D]. 上海:上海交通大学,2012.
|
[6] |
焦阳. 压水堆一回路中Zn2+注入对包壳材料锆合金耐蚀性的影响[D]. 保定:华北电力大学,2012.
|
[7] |
段振刚,张乐福,王力,等. 模拟压水堆一回路水环境中Zn对304奥氏体不锈钢氧化膜成分的影响研究[J]. 腐蚀科学与防护技术,2014,26(3):237-240. DUAN Zhengang, ZHANG Lefu, WANG Li, et al. Effect of Zn addition on composition of oxide films formed on 304 Austenitic stainless steel in simulated primary waters for PWR[J]. Corrosion Science and Protection Technology, 2014, 26(3): 237-240(in Chinese).
|
[8] |
ZIEMNIAK S E, HANSON M E. Zinc treatment effects on corrosion behavior of alloy 600 in high temperature, hydrogenated water[J]. Corrosion Science, 2006, 48(2): 498-521.
|
[9] |
乔培鹏,张乐福,刘瑞芹,等. 压水堆条件下锌对奥氏体不锈钢腐蚀性能的影响[J]. 原子能科学技术,2010,44(6):690-693. QIAO Peipeng, ZHANG Lefu, LIU Ruiqin, et al. Zinc addition effects on general corrosion of austenitic stainless steels in PWR primary conditions[J]. Atomic Energy Science and Technology, 2010, 44(6): 690-693(in Chinese).
|
[10] |
鲍一晨,石秀强,胡华四,等. 一种基于混合传导模型的一回路结构材料腐蚀-活化-迁移模型及其应用[J]. 核科学与工程,2017,37(2):169-175. BAO Yichen, SHI Xiuqiang, HU Huasi, et al. A model for zinc addition effect on corrosion product release, activation and transportation in RCS based on mixed-conduction model and its application[J]. Nuclear Science and Engineering, 2017, 37(2): 169-175(in Chinese).
|
[11] |
LEE J B. Electrochemical approach to corrosion problems of several ironnickel-chromium alloys in high temperature, highpressure water[D]. US: Ohio State University, 1978.
|
[12] |
LAMOREAUX R H, CUBICCIOTTI D. Contributions of the oxide layer to the corrosion potential of stainless steel under nuclear reactor conditions[J]. J Electrochem Soc, 1993, 140(8): 2197-2204.
|
[13] |
LISTER D. Corrosion-product release in light water reactors, EPRI NP-3460[R]. US: EPRI, 1984.
|
[14] |
JONES D A. Principles and prevention of corrosion[M]. Saddle River, NJ: Prentice Hall, 1992.
|
[15] |
HOSOKAWA H, NAGASE M. Investigation of cobalt deposition behavior with zinc injection on stainless steel under BWR conditions[J]. Journal of Nuclear Science and Technology, 2004, 41(6): 682-689.
|
[16] |
HUANG Junbo, LIU Xiahe, HAN Enhou, et al. Influence of Zn on oxide films on alloy 690 in borated and lithiated high temperature water[J]. Corrosion Science, 2011, 53: 3254-3261.
|