一回路注锌对腐蚀产物的影响分析

田超, 夏明明, 黄博琛, 景福庭, 肖锋, 吕焕文, 高希龙

田超, 夏明明, 黄博琛, 景福庭, 肖锋, 吕焕文, 高希龙. 一回路注锌对腐蚀产物的影响分析[J]. 原子能科学技术, 2021, 55(11): 2107-2112. DOI: 10.7538/yzk.2020.youxian.0865
引用本文: 田超, 夏明明, 黄博琛, 景福庭, 肖锋, 吕焕文, 高希龙. 一回路注锌对腐蚀产物的影响分析[J]. 原子能科学技术, 2021, 55(11): 2107-2112. DOI: 10.7538/yzk.2020.youxian.0865
TIAN Chao, XIA Mingming, HUANG Bochen, JING Futing, XIAO Feng, LYU Huanwen, GAO Xilong. Effect Analysis of Zinc Injection on Corrosion Product in Primary Circuit[J]. Atomic Energy Science and Technology, 2021, 55(11): 2107-2112. DOI: 10.7538/yzk.2020.youxian.0865
Citation: TIAN Chao, XIA Mingming, HUANG Bochen, JING Futing, XIAO Feng, LYU Huanwen, GAO Xilong. Effect Analysis of Zinc Injection on Corrosion Product in Primary Circuit[J]. Atomic Energy Science and Technology, 2021, 55(11): 2107-2112. DOI: 10.7538/yzk.2020.youxian.0865

一回路注锌对腐蚀产物的影响分析

Effect Analysis of Zinc Injection on Corrosion Product in Primary Circuit

  • 摘要: 目前的压水堆中多采用注锌技术来降低一回路腐蚀产物的源项,然而关于注锌对腐蚀产物影响的理论机理以及计算分析研究较为欠缺。基于此,本文从理论机理、程序开发、数值计算分析和实验验证的角度论证分析注锌对一回路腐蚀产物以及源项的影响。理论计算表明:注锌能明显降低基体金属中镍和钴的溶解;随着运行时间的增加,注锌对一回路冷却剂中的58Co和60Co呈现出抑制作用;注锌实验结果与理论计算分析的比值在0.5~2.0范围内,符合情况良好。本研究能为核电厂合理地采取注锌技术提供理论支撑。

     

    Abstract: At present, zinc injection technology is used in PWR to reduce the corrosion product source term in primary circuit, however, the theoretical mechanism and calculation analysis of the effect of zinc injection on corrosion products are relatively lacking. In this paper, the effect of zinc injection on corrosion products and source terms in primary circuit was demonstrated and analyzed from the aspects of theoretical mechanism, program development, numerical calculation analysis and experiment verification. The theory calculation indicates that zinc injection can significantly reduce the dissolution of nickel and cobalt in the basic metal. With the increase of running time, zinc injection inhibites 58Co and 60Co in primary coolant, that is, it shows a trend of gradual decline over time. The ratio of experimental results and theoretical calculation of zinc injection is within the range of 0.5-2.0, which is in good agreement. This study can provide theoretical support for rational application of zinc injection technology in nuclear power plants.

     

  • [1] 云桂春,成徐州. 压水反应堆水化学[M]. 哈尔滨:哈尔滨工程大学出版社,2009:59-91.
    [2] 刘侠和,吴欣强,韩恩厚. 轻水堆结构材料在加锌水中的腐蚀行为研究状况与进展[J]. 腐蚀科学与防护技术,2011,23(4):287-292.
    LIU Xiahe, WU Xinqiang, HAN Enhou. Status and progress on study of corrosion behavior of structural materials in Zninjected waters for LWRs[J]. Corrosion Science and Protection Technology, 2011, 23(4): 287-292(in Chinese).
    [3] 姜苏青,张乐福. 加锌对镍基690合金均匀腐蚀影响的XPS分析[J]. 原子能科学技术,2012,46(3):268-271.
    JIANG Suqing, ZHANG Lefu. XPS analysis of zinc injection effects on general corrosion of nickel-base alloy 690[J]. Atomic Energy Science and Technology, 2012, 46(3): 268-271(in Chinese).
    [4] 姜苏青. 注锌对压水堆核电站一回路结构材料腐蚀行为影响的研究[D]. 上海:上海交通大学,2011.
    [5] 王力. 加锌对一回路材料氧化膜结构影响及其机理研究[D]. 上海:上海交通大学,2012.
    [6] 焦阳. 压水堆一回路中Zn2+注入对包壳材料锆合金耐蚀性的影响[D]. 保定:华北电力大学,2012.
    [7] 段振刚,张乐福,王力,等. 模拟压水堆一回路水环境中Zn对304奥氏体不锈钢氧化膜成分的影响研究[J]. 腐蚀科学与防护技术,2014,26(3):237-240.
    DUAN Zhengang, ZHANG Lefu, WANG Li, et al. Effect of Zn addition on composition of oxide films formed on 304 Austenitic stainless steel in simulated primary waters for PWR[J]. Corrosion Science and Protection Technology, 2014, 26(3): 237-240(in Chinese).
    [8] ZIEMNIAK S E, HANSON M E. Zinc treatment effects on corrosion behavior of alloy 600 in high temperature, hydrogenated water[J]. Corrosion Science, 2006, 48(2): 498-521.
    [9] 乔培鹏,张乐福,刘瑞芹,等. 压水堆条件下锌对奥氏体不锈钢腐蚀性能的影响[J]. 原子能科学技术,2010,44(6):690-693.
    QIAO Peipeng, ZHANG Lefu, LIU Ruiqin, et al. Zinc addition effects on general corrosion of austenitic stainless steels in PWR primary conditions[J]. Atomic Energy Science and Technology, 2010, 44(6): 690-693(in Chinese).
    [10] 鲍一晨,石秀强,胡华四,等. 一种基于混合传导模型的一回路结构材料腐蚀-活化-迁移模型及其应用[J]. 核科学与工程,2017,37(2):169-175.
    BAO Yichen, SHI Xiuqiang, HU Huasi, et al. A model for zinc addition effect on corrosion product release, activation and transportation in RCS based on mixed-conduction model and its application[J]. Nuclear Science and Engineering, 2017, 37(2): 169-175(in Chinese).
    [11] LEE J B. Electrochemical approach to corrosion problems of several ironnickel-chromium alloys in high temperature, highpressure water[D]. US: Ohio State University, 1978.
    [12] LAMOREAUX R H, CUBICCIOTTI D. Contributions of the oxide layer to the corrosion potential of stainless steel under nuclear reactor conditions[J]. J Electrochem Soc, 1993, 140(8): 2197-2204.
    [13] LISTER D. Corrosion-product release in light water reactors, EPRI NP-3460[R]. US: EPRI, 1984.
    [14] JONES D A. Principles and prevention of corrosion[M]. Saddle River, NJ: Prentice Hall, 1992.
    [15] HOSOKAWA H, NAGASE M. Investigation of cobalt deposition behavior with zinc injection on stainless steel under BWR conditions[J]. Journal of Nuclear Science and Technology, 2004, 41(6): 682-689.
    [16] HUANG Junbo, LIU Xiahe, HAN Enhou, et al. Influence of Zn on oxide films on alloy 690 in borated and lithiated high temperature water[J]. Corrosion Science, 2011, 53: 3254-3261.
  • 期刊类型引用(1)

    1. 吕生龙. 情景模拟技术在警务技战术模块化课程体系中的应用研究. 微型电脑应用. 2023(04): 156-159 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  883
  • HTML全文浏览量:  0
  • PDF下载量:  891
  • 被引次数: 4
出版历程
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回