高温钠热管传热性能试验研究

卫光仁, 柴宝华, 韩冶, 张亚坤, 冯波, 毕可明, 杨斌, 王晨龙

卫光仁, 柴宝华, 韩冶, 张亚坤, 冯波, 毕可明, 杨斌, 王晨龙. 高温钠热管传热性能试验研究[J]. 原子能科学技术, 2021, 55(6): 1039-1046. DOI: 10.7538/yzk.2021.youxian.0115
引用本文: 卫光仁, 柴宝华, 韩冶, 张亚坤, 冯波, 毕可明, 杨斌, 王晨龙. 高温钠热管传热性能试验研究[J]. 原子能科学技术, 2021, 55(6): 1039-1046. DOI: 10.7538/yzk.2021.youxian.0115
WEI Guangren, CHAI Baohua, HAN Ye, ZHANG Yakun, FENG Bo, BI Keming, YANG Bin, WANG Chenlong. Experimental Study on Heat Transfer Performance of High Temperature Sodium Heat Pipe[J]. Atomic Energy Science and Technology, 2021, 55(6): 1039-1046. DOI: 10.7538/yzk.2021.youxian.0115
Citation: WEI Guangren, CHAI Baohua, HAN Ye, ZHANG Yakun, FENG Bo, BI Keming, YANG Bin, WANG Chenlong. Experimental Study on Heat Transfer Performance of High Temperature Sodium Heat Pipe[J]. Atomic Energy Science and Technology, 2021, 55(6): 1039-1046. DOI: 10.7538/yzk.2021.youxian.0115

高温钠热管传热性能试验研究

Experimental Study on Heat Transfer Performance of High Temperature Sodium Heat Pipe

  • 摘要: 为获得高温钠热管传热性能,开展真空条件下钠热管启动性能和等温性能试验,获得了钠热管真空条件下启动速度与等温性能数据;开展强制冷却工况条件下传热性能试验,获得了钠热管声速限特性与试验工况下的最大传热功率。经试验验证,所研制高温钠热管在真空条件下,580 ℃时完全启动,启动用时20 min,轴向壁面温差低于11 ℃,等温性能良好;钠热管传热功率在工作温度为500~650 ℃时受声速极限限制,在650 ℃以上受携带极限限制;在750 ℃和850 ℃时,测得热管最大散热功率分别为4.78 kW与8.02 kW,对应的最大轴向热流密度分别为1.51 kW/cm2与2.53 kW/cm2。试验结果表明,所研制钠热管具有较强传热能力,可满足热管式核反应堆等工程应用需求。

     

    Abstract: In order to obtain the heat transfer performance of high temperature sodium heat pipe, the start-up performance and isothermal performance tests of sodium heat pipe under vacuum conditions were carried out, and the start-up speed and isothermal performance data of sodium heat pipe under vacuum conditions were obtained. Heat transfer performance tests under the forced cooling conditions were carried out, and the sonic limit characteristics of sodium heat pipe and the maximum heat transfer power under test conditions were obtained. The experimental results show that the developed high temperature sodium heat pipe is fully started at 580 ℃ under vacuum condition, and the start-up time is 20 minutes, the axial wall temperature difference is lower than 11 ℃, and the isothermal performance is good. The heat transfer power of sodium heat pipe is limited by the sonic limit in the temperature range of 500-650 ℃, and is limited by carrying limit in the operating temperature above 650 ℃. When the working temperature is 750 ℃ and 850 ℃, the measured maximum heat transfer power of the heat pipe is 4.78 kW and 8.02 kW, respectively, and the maximum axial heat flux density was 1.51 kW/cm2 and 2.53 kW/cm2, respectively. The test results show that the developed sodium heat pipe has strong heat transfer capability which can meet the needs of heat pipe nuclear reactors and other engineering applications.

     

  • [1] 庄骏,张红. 热管技术及其工程应用[M]. 北京:化学工业出版社,2000:5-13.
    [2] 韩冶,柴宝华,周问,等. 基于多孔介质模型的钾热管数值模拟研究[J]. 原子能科学技术,2014,48(1):49-53.
    HAN Ye, CHAI Baohua, ZHOU Wen, et al. Numerical simulation of potassium heat pipe based on porous media model[J]. Atomic Energy Science and Technology, 2014, 48(1): 49-53(in Chinese).
    [3] 胡居传,岳永亮,王铁恒,等. 热管的应用及发展现状[J]. 制冷,2001,9(3):20-25.
    HU Juchuan, YUE Yongliang, WANG Tieheng, et al. The application and development status of heat pipes[J]. Refrigeration, 2001, 9(3): 20-25(in Chinese).
    [4] 张光玉,张红,涂善东,等. 热管在核电工程中的应用[J]. 原子能科学技术,1997,31(1):89-95.
    ZHANG Guangyu, ZHANG Hong, TU Shandong, et al. The application of heat pipes in nuclear power engineering[J]. Atomic Energy Science and Technology, 1997, 31(1): 89-95(in Chinese).
    [5] 李金旺,戴书刚. 高温热管技术研究进展与展望[J]. 中国空间科学技术,2019,6(3):30-42.
    LI Jinwang, DAI Shugang. Research progress and prospects of high-temperature heat pipe technology[J]. Chinese Space Science and Technology, 2019, 6(3): 30-42(in Chinese).
    [6] 王傲,申凤阳,胡古,等. 热管空间核反应堆电源的研究进展[J]. 核技术,2020,6(6):1-6.
    WANG Ao, SHEN Fengyang, HU Gu, et al. Research progress of heat pipe space nuclear reactor power supply[J]. Nuclear Technology, 2020, 6(6): 1-6(in Chinese).
    [7] 赵蔚琳,刘宗明,李树人. 高温热管的研究与发展[J]. 石油化工设备,2005,7(4):40-43.
    ZHAO Weilin, LIU Zongming, LI Shuren. Research and development of high-temperature heat pipes[J]. Petrochemical Equipment, 2005, 7(4): 40-43(in Chinese).
    [8] 王成龙,田文喜,苏光辉,等. 新概念熔盐堆非能动余热排出系统中钠热管的特性研究[J]. 原子能科学技术,2013,47(12):2254-2255.
    WANG Chenglong, TIAN Wenxi, SU Guanghui, et al. Research on the characteristics of sodium heat pipe in the passive waste heat removal system of the new concept molten salt reactor[J]. Atomic Energy Science and Technology, 2013, 47(12): 2254-2255(in Chinese).
    [9] 卫光仁,柴宝华,魏国锋,等. 干道式高温热管的传热性能试验研究[J]. 原子能科学技术,2014,48(3):447-448.
    WEI Guangren, CHAI Baohua, WEI Guofeng, et al. Experimental study on the heat transfer performance of dry-channel high-temperature heat pipes[J]. Atomic Energy Science and Technology, 2014, 48(3): 447-448(in Chinese).
    [10] 赵蔚琳,庄俊,张红. 钠热管的性能试验研究[J]. 化工装备技术,2014,2(1):25-27.
    ZHAO Weilin, ZHUANG Jun, ZHANG Hong. Performance test of sodium heat pipe[J]. Chemical Equipment Technology, 2014, 2(1): 25-27(in Chinese).
    [11] FELDMAN K T, WHITING G H. Applications of the heat pipe[J]. Mechanical Engineering, 1968, 11(5): 48-53.
    [12] MASON L M. A comparison of fission power system options for lunar and mars surface applications[C]∥AIP Conference Proceedings. New York: Space Technology Applications International Forum, 2006: 270-280.
    [13] AMIRI B W. A stainless-steel uranium-dioxide potassium-heatpipe-cooled surface reator[C]∥AIP Conference Proceedings. New York: Space Technology Applications International Forum, 2006: 289-297.
    [14] ZINKLE S J. Overview of materials technologies for space nuclear power and propulsion[C]∥AIP Conference Proceedings. New York: Space Technology Applications International Forum, 2002: 1063-1074.
    [15] GIBSON M. The kilopower reactor using stirling technology (KRUSTY) nuclear ground test results and lessons learned[C]∥International Energy Conversion Engineering Conference. Cincinnati, Ohio: AIAA Propulsion and Energy Forum, 2018: 1-12.
    [16] ROSENFELD J H. An overview of long duration sodium heat pipe tests[C]∥AIP Conference Proceedings. USA: Space Technology Applications International Forum, 2004: 1-9.
    [17] 王晓博. 千瓦级空间核反应堆电源发展现状[J]. 工程技术研究,2017(10):1-3.
    WANG Xiaobo. Development status of kilowatt space nuclear reactor power supply[J]. Engineering Technology Research, 2017(10): 1-3(in Chinese).
    [18] DEREK B. Self-venting arterial heat pipes for spacecraft applications[C]∥14th International Energy Conversion Engineering Conference. Salt Lake, UT: Propulsion and Energy Forum, 2016: 1-14.
    [19] 于萍,张红,许辉,等. 高温钠热管再启动特性研究[J]. 中国电机工程学报,2015,1(2):404-410.
    YU Ping, ZHANG Hong, XU Hui, et al. Study on the restart characteristics of high-temperature sodium heat pipes[J]. Proceedings of the Chinese Society of Electrical Engineering, 2015, 1(2): 404-410(in Chinese).
    [20] 韩冶,柴宝华,卫光仁,等. 有芯和无芯高温重力钾热管启动性能试验研究[J]. 原子能科学技术,2019,53(1):38-44.
    HAN Ye, CHAI Baohua, WEI Guangren, et al. Experimental study on start-up performance of cored and coreless hightemperature gravity potassium heat pipes[J]. Atomic Energy Science and Technology, 2019, 53(1): 38-44(in Chinese).
    [21] 韩冶,柴宝华,王泽鸣,等. 中温热管工质选型与试验研究[J]. 科技创新导报,2019,5(13):101-105.
    HAN Ye, CHAI Baohua, WANG Zeming, et al. Selection and experimental research of medium temperature heat pipe working fluid[J]. Science and Technology Innovation Herald, 2019, 5(13): 101-105(in Chinese).
    [22] FAGHRI A. Heat pipe science and technology[M]. UK : Taylor & Francis Press, 1995: 15-23.
    [23] COTTER T P. Theory of heat pipes, LA-3246-MS[R]. USA: Los Alamos Scientific Lab., 1965.
    [24] TURNER R C. The constant temperature heat pipea unique device for the thermal control of spacecraft components[C]∥AIAA 4th Thermophysics Conference. USA: AIAA, 1969.
    [25] BIENERT W. Heat pipes for temperature control[C]∥4th Intersociety Energy Conversion Engineering Conference. USA: [s. n.], 1969.
    [26] 杨世铭,陶文铨. 传热学[M]. 4版. 北京:高等教育出版社,2006:3-38.
  • 期刊类型引用(10)

    1. 牟玉鹏,刘剑术,李小斌,张红娜,李凤臣,韩冶,王泽鸣,柴宝华. 航天器用水热管冻结特性数值模拟研究. 航天器工程. 2024(01): 84-91 . 百度学术
    2. 李忠,王姝妙,梁文峰,马明阳,滕春明,谢奇林. 环道型高温钠热管设计与验证. 原子能科学技术. 2024(12): 2515-2523 . 本站查看
    3. 白玉潭,刘家驹,张平. 大直径高温热管在高热流密度下的性能实验研究. 科学通报. 2023(Z1): 271-281 . 百度学术
    4. 李世斌,马锐,王林. 高速飞行器组合式热防护系统研究进展. 战术导弹技术. 2023(01): 8-21 . 百度学术
    5. 张友佳,蒋顺利,周慧辉,袁德文,吴张华,徐建军,闫晓,苏东川,田文喜. 高温热管耦合热声发电机运行特性试验研究. 清华大学学报(自然科学版). 2023(08): 1204-1212 . 百度学术
    6. 杨义博,许辉,郑义,张红. 大长径比高温热管传热性能试验研究. 兵器装备工程学报. 2023(10): 280-286 . 百度学术
    7. 周佐新,黄金印,张红星,赵亮. 我国航天器热控技术发展及展望. 航天器工程. 2023(06): 1-9 . 百度学术
    8. 刘剑术,牟玉鹏,李小斌,张红娜,李凤臣,韩冶,王泽鸣,柴宝华. 钠热管传热极限过渡数值模拟分析. 航天器工程. 2023(06): 123-129 . 百度学术
    9. 张端,许辉,张红,贺美娟. 锂热管开发及水平状态下启动特性试验研究. 能源研究与利用. 2022(02): 16-20 . 百度学术
    10. 马誉高,张英楠,余红星,黄善仿. 丝网芯内钠薄液膜蒸发与毛细特性研究. 原子能科学技术. 2022(06): 1154-1162 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  562
  • HTML全文浏览量:  4
  • PDF下载量:  1085
  • 被引次数: 13
出版历程
  • 刊出日期:  2021-06-19

目录

    /

    返回文章
    返回