肠杆菌Enterobacteria sp. X57富集铀(Ⅵ)的初探

曾倩, 朱婷, 李飞泽, 杨远友, 杨吉军, 兰图, 廖家莉, 刘宁

曾倩, 朱婷, 李飞泽, 杨远友, 杨吉军, 兰图, 廖家莉, 刘宁. 肠杆菌Enterobacteria sp. X57富集铀(Ⅵ)的初探[J]. 原子能科学技术, 2022, 56(7): 1258-1266. DOI: 10.7538/yzk.2021.youxian.0323
引用本文: 曾倩, 朱婷, 李飞泽, 杨远友, 杨吉军, 兰图, 廖家莉, 刘宁. 肠杆菌Enterobacteria sp. X57富集铀(Ⅵ)的初探[J]. 原子能科学技术, 2022, 56(7): 1258-1266. DOI: 10.7538/yzk.2021.youxian.0323
ZENG Qian, ZHU Ting, LI Feize, YANG Yuanyou, YANG Jijun, LAN Tu, LIAO Jiali, LIU Ning. Preliminary Exploration of U(Ⅵ) Enrichment by Enterobacteria sp X57[J]. Atomic Energy Science and Technology, 2022, 56(7): 1258-1266. DOI: 10.7538/yzk.2021.youxian.0323
Citation: ZENG Qian, ZHU Ting, LI Feize, YANG Yuanyou, YANG Jijun, LAN Tu, LIAO Jiali, LIU Ning. Preliminary Exploration of U(Ⅵ) Enrichment by Enterobacteria sp X57[J]. Atomic Energy Science and Technology, 2022, 56(7): 1258-1266. DOI: 10.7538/yzk.2021.youxian.0323

肠杆菌Enterobacteria sp. X57富集铀(Ⅵ)的初探

Preliminary Exploration of U(Ⅵ) Enrichment by Enterobacteria sp X57

  • 摘要: 为开发可用于铀污染环境修复的优势微生物,本文考察了一株从铀污染场所分离的新型肠杆菌Enterobacter sp. X57在不同的环境因素下对铀的富集行为,并结合相关的表征探索了可能的生物富集机理。结果表明,Enterobacter sp. X57对铀的富集依赖于细菌的代谢活性,且受接触时间、pH值、温度、初始铀(Ⅵ)浓度以及共存离子等多种因素的共同影响。在铀初始浓度100 mg/L、温度303 K、pH=7.00条件下,Enterobacter sp. X57对铀的最大富集量约为175.52 mg/g(干重)。动力学研究结果表明,Enterobacter sp. X57富集铀的过程存在化学吸附、粒内扩散等多个阶段。傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)以及X射线衍射(XRD)结果表明,溶液中的铀(Ⅵ)与细胞中的羧基、氨基、磷酰基等官能团发生络合,并同时扩散至胞内的细胞质膜上形成铀-磷酸盐矿物。上述结果表明,Enterobacter sp. X57对铀的富集是通过生物吸附和生物沉积矿化的协同作用实现的。

     

    Abstract: In this work, the enrichment behavior and mechanisms of U(Ⅵ) by Enterobacter sp. X57, a novel bacterial strain isolated from uranium contaminated sites, under different environmental conditions were investigated to develop superior microorganisms for uranium-contaminated environments bioremediation. The results show that the enrichment of U(Ⅵ) by Enterobacter sp. X57 depended on the cellular metabolic activity, and was also influenced by the contact time, pH, temperature, initial U(Ⅵ) concentration and coexisting ions. Under the conditions of initial concentration of U(Ⅵ) of 100 mg/L, temperature of 303 K and pH=7.00, the maximum enrichment capacity of Enterobacter sp. X57 is about 175.52 mg/g (dry weight). Kinetics results indicate that the enrichment process of U(Ⅵ) by Enterobacter sp. X57 involves chemical adsorption and intra particle diffusion. The analyses of FT-IR, SEM, TEM, EDS and XRD further reveal that uranyl in solution could rapidly bond with the carboxyl, amino, and phosphoryl groups of Enterobacter sp. X57, and diffuse into cell periplasmic space, depositing as U(Ⅵ)-phosphate minerals on the cell plasma membrane. The results indicate that the enrichment of uranium by enterbacter sp. X57 is realized by the synergism of biosorption and biomineralization.

     

  • [1] GAO N, HUANG Z H, LIU H Q, et al. Advances on the toxicity of uranium to different organisms[J]. Chemosphere, 2019, 237: 124548.
    [2] 赵欣. 地质环境中锕系元素水溶液化学研究进展[J]. 核科学与工程,1997,17(1):65-74.
    ZHAO Xin. Some recent progress of the studies on solution chemistry of actinides in the geosphere[J]. Chinese Journal of Nuclear Science and Engineering, 1997, 17(1): 65-74(in Chinese).
    [3] WILLIAMS K H, BARGAR J R, LLOYD J R, et al. Bioremediation of uranium-contaminated groundwater: A systems approach to subsurface biogeochemistry[J]. Current Opinion in Biotechnology, 2013, 24(3): 489-497.
    [4] LAVOIE M, SABATIER S, GARNIER-LAPLACE J, et al. Uranium accumulation and toxicity in the green alga Chlamydomonas reinhardtii is modulated by pH[J]. Environmental Toxicology and Chemistry, 2014, 33(6): 1372-1379.
    [5] 万芹方,任亚敏,王亮,等. 铀污染土壤的植物修复研究[J]. 化学学报,2011,69(15):1780-1788.
    WAN Qinfang, REN Yamin, WANG Liang, et al. Phytoremediation for soil contaminated by uranium[J]. Acta Chimica Sinica, 2011, 69(15): 1780-1788(in Chinese).
    [6] BARKAY T, SCHAEFER J. Metal and radionuclide bioremediation: Issues, considerations and potentials[J]. Current Opinion in Microbiology, 2001, 4(3): 318-323.
    [7] MERROUN M L, SELENSKA-POBELL S. Bacterial interactions with uranium: An environmental perspective[J]. Journal of Contaminant Hydrology, 2008, 102(3): 285-295.
    [8] KELLY S D, KEMNER K M, FEIN J B, et al. X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions[J]. Geochimica et Cosmochimica Acta, 2002, 66(22): 3855-3871.
    [9] LOPEZ-FERNANDEZ M, ROMERO-GONZALEZ M, GUNTHER A, et al. Effect of U(Ⅵ) aqueous speciation on the binding of uranium by the cell surface of Rhodotorula mucilaginosa, a natural yeast isolate from bentonites[J]. Chemosphere, 2018, 199: 351-360.
    [10] WUFUER R, WEI Y, LIN Q, et al. Uranium bioreduction and biomineralization[J]. Advances in Applied Microbiology, 2017, 101: 137-168.
    [11] KOLHE N, ZINJARDE S, ACHARYA C. Responses exhibited by various microbial groups relevant to uranium exposure[J]. BiotechnologyAdvances, 2018, 36(7): 1828-1846.
    [12] ZHANG J, SONG H, CHEN Z, et al. Biomineralization mechanism of U(Ⅵ) induced by Bacillus cereus 12-2: The role of functional groups and enzymes[J]. Chemosphere, 2018, 206: 682-692.
    [13] LIANG X J, HILLIER S, PENDLOWSKI H, et al. Uranium phosphate biomineralization by fungi[J]. Environmental Microbiology, 2015, 17(6): 2064-2075.
    [14] SUZUKI Y, KELLY S D, KEMNER K M, et al. Nanometre-size products of uranium bioreduction[J]. Nature, 2002, 419: 134.
    [15] ZHENG X Y, SHEN Y H, WANG X Y, et al. Effect of pH on uranium(Ⅵ) biosorption and biomineralization by Saccharomyces cerevisiae[J]. Chemosphere, 2018, 203: 109-116.
    [16] LI X L, DING C C, LIAO J L, et al. Biosorption of uranium on Bacillus sp. dwc-2: Preliminary investigation on mechanism[J]. Journal of Environmental Radioactivity, 2014, 135: 6-12.
    [17] TU H, YUAN G Y, ZHAO C S, et al. U-phosphate biomineralization induced by Bacillus sp. dw-2 in the presence of organic acids[J]. Nuclear Engineering and Technology, 2019, 51(5): 1322-1332.
    [18] SANCHEZ-CASTRO I, MARTINEZ-RODRIGUEZ P, JROUNDI F, et al. High-efficient microbial immobilization of solved U(Ⅵ) by the Stenotrophomonas strain Br8[J]. Water Research, 2020, 183: 116110.
    [19] COELHO E, REIS T A, COTRIM M, et al. Resistant fungi isolated from contaminated uranium mine in Brazil shows a high capacity to uptake uranium from water[J]. Chemosphere, 2020, 248: 126068.
    [20] JROUNDI F, MERROUN M L, ARIAS J M, et al. Spectroscopic and microscopic characterization of uranium biomineralization in Myxococcus xanthus[J]. Geomicrobiology Journal, 2007, 24(5): 441-449.
    [21] WEI Y L, CHEN Z, SONG H, et al. The immobilization mechanism of U(Ⅵ) induced by Bacillus thuringiensis 016 and the effects of coexisting ions[J]. Biochemical Engineering Journal, 2019, 144: 57-63.
    [22] WANG Y Q, NIE X Q, CHENG W C, et al. A synergistic biosorption and biomineralization strategy for Kocuria sp. to immobilizing U(Ⅵ) from aqueous solution[J]. Journal of Molecular Liquids, 2019, 275: 215-220.
    [23] 环境保护部.HJ 840-2017环境样品中微量铀的分析方法[S]. 北京:环境科学出版社,2017.
  • 期刊类型引用(1)

    1. 郭豫齐,涂鸿,李飞泽,兰图,杨吉军,杨远友,刘宁,廖家莉. U(Ⅵ)在芽孢杆菌Bacillus sp.dwc-2上的矿化动力学研究. 原子能科学技术. 2023(10): 1878-1888 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  78
  • HTML全文浏览量:  0
  • PDF下载量:  171
  • 被引次数: 3
出版历程
  • 刊出日期:  2022-07-19

目录

    /

    返回文章
    返回