[1] |
HASHIZUME A. Nuclear data sheets for A=127[J]. Nuclear Data Sheets, 2011, 112(7): 1647-1831.
|
[2] |
MORIYAMA H, FUJIWARA I, NISHI T. Chemical behavior of antimony and tellurium fission products in aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 1980, 55(1): 45-60.
|
[3] |
KLEINBERG J. Collected radiochemical proce-dures[M]. US: US Atomic Energy Commission, Technical Information Service, 1953.
|
[4] |
FOLGER H, KRATZ J, HERRMANN G. Rapid volatilization of arsenic, selenium, antimony, and tellurium in form of their hydrides[R]. Germany: Johannes Gutenberg-Universitt of MAINZ, 1969.
|
[5] |
郭景儒. 用放射化学方法测定125Sb[J]. 原子能科学技术,1963(6):458-461.
|
[6] |
张先梓,黄美新,张绪立,等. 应用季铵7402从含氟的辐照铀溶液中系统分离主要裂变产物[J]. 原子能科学技术,1977,11(1):70-76.
|
[7] |
CALETKA R, KRIVAN V. Anion-exchange behaviour of some elements in HF-HCl medium[J]. Journal of Radioanalytical and Nuclear Chemistry, 1990, 142(2): 373-382.
|
[8] |
AKATSU E, TOMIZAWA T, ARATONO Y. Separation of antimony-125 in fission products[J]. Journal of Nuclear Science and Technology, 1974, 11(12): 571-574.
|
[9] |
UKASZCZYK L, YRNICKI W. Speciation analysis of Sb(Ⅲ) and Sb(Ⅴ) in antileishmaniotic drug using Dowex 1×4 resin from hydrochloric acid solution[J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52(5): 747-751.
|
[10] |
余振华,王秀凤,丁有钱,等. 钚及其裂变产物钯、银、镉、锡、锑、锆的系统分离方法[J]. 核化学与放射化学,2019,41(6):537-543. YU Zhenhua, WANG Xiufeng, DING Youqian, et al. A systematic separation procedure for plutonium and its fission products palladium, silver, cadmium, tin, antimony and zirconium[J]. Journal of Nuclear and Radiochemistry, 2019, 41(6): 537-543(in Chinese).
|
[11] |
BUCHER B, SNOW M S, CRDENAS E S, et al. Revision of forensics-relevant nuclear data in 127Sb β-decay[J]. Physical Review C, 2019, 99(3): 034314.
|
[12] |
MARUYAMA Y, YAMAASHI Y. A simple method for the separation of 125Sb from neutron-irradiated tin[J]. International Journal of Radiation Applications and Instrumentation A, 1988, 39(10): 1079-1080.
|
[13] |
YANG Z, CHEN G, WENG H, et al. Efficient and selective separation of U(Ⅵ) and Th(Ⅳ) from rare earths using functionalized hierarchically mesoporous silica[J]. Journal of Materials Science, 2018, 53(5): 3398-3416.
|
[14] |
MILNE J. Spectrophotometric studies on Sb(Ⅲ) in hydrochloric acid solutions[J]. Canadian Journal of Chemistry, 1975, 53(6): 888-893.
|
[15] |
NEUMANN H M. Antimony(Ⅴ) species in hydrochloric acid solution1[J]. Journal of the American Chemical Society, 1954, 76(10): 2611-2615.
|
[16] |
FILELLA M, MAY P M. Computer simulation of the low-molecular-weight inorganic species distribution of antimony(Ⅲ) and antimony(Ⅴ) in natural waters[J]. Geochimica et Cosmochimica Acta, 2003, 67(21): 4013-4031.
|
[17] |
FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment: A review focused on natural waters, Ⅱ: Relevant solution chemistry[J]. Earth-Science Reviews, 2002, 59(1-4): 265-285.
|
[18] |
FUJII T, YAMANA H, WATANABE M, et al. Extraction study for TRUEX process using short-lived radionuclides produced by neutron irradiation of uranium[J]. Solvent Extraction and Ion Exchange, 2002, 20(2): 151-175.
|
[19] |
CHAIKO D J, VANDEGRIFT G F. A thermodynamic model of nitric acid extraction by tri-n-butyl phosphate[J]. Nuclear Technology, 1988, 82(1): 52-59.
|
[20] |
BELAIR S, LABET A, MARIET C, et al. Modeling of the extraction of nitric acid and neodymium nitrate from aqueous solutions over a wide range of activities by CMPO[J]. Solvent Extraction and Ion Exchange, 2005, 23(4): 481-499.
|
[21] |
SHI K, QIAO J, WU W, et al. Rapid determination of technetium-99 in large volume seawater samples using sequential injection extraction chromatographic separation and ICP-MS meas-urement[J]. Analytical Chemistry, 2012, 84(15): 6783-6789.
|
[22] |
PENG G, HE Q, LU Y, et al. Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr(Ⅲ) and Cr(Ⅵ) in water samples after solid phase extraction[J]. Analytica Chimica Acta, 2017, 955: 58-66.
|