微处理器中子单粒子效应测试系统设计与试验研究

段丙皇, 杜川华, 朱小锋, 李悦, 陈泉佑

段丙皇, 杜川华, 朱小锋, 李悦, 陈泉佑. 微处理器中子单粒子效应测试系统设计与试验研究[J]. 原子能科学技术, 2022, 56(4): 734-741. DOI: 10.7538/yzk.2021.youxian.0786
引用本文: 段丙皇, 杜川华, 朱小锋, 李悦, 陈泉佑. 微处理器中子单粒子效应测试系统设计与试验研究[J]. 原子能科学技术, 2022, 56(4): 734-741. DOI: 10.7538/yzk.2021.youxian.0786
DUAN Binghuang, DU Chuanhua, ZHU Xiaofeng, LI Yue, CHEN Quanyou. Design and Test of Neutron-induced Single Event Effect Monitoring System on Microprocessor[J]. Atomic Energy Science and Technology, 2022, 56(4): 734-741. DOI: 10.7538/yzk.2021.youxian.0786
Citation: DUAN Binghuang, DU Chuanhua, ZHU Xiaofeng, LI Yue, CHEN Quanyou. Design and Test of Neutron-induced Single Event Effect Monitoring System on Microprocessor[J]. Atomic Energy Science and Technology, 2022, 56(4): 734-741. DOI: 10.7538/yzk.2021.youxian.0786

微处理器中子单粒子效应测试系统设计与试验研究

Design and Test of Neutron-induced Single Event Effect Monitoring System on Microprocessor

  • 摘要: 为开展微处理器的空间大气中子单粒子效应研究,以一款TI公司65 nm CMOS工艺的微处理器为研究对象,研制了一套微处理器中子单粒子效应测试系统。该测试系统可实现对被测微处理器的单粒子翻转、单粒子功能中断和单粒子闩锁效应的实时监测。利用加速器中子源,对该微处理器开展14 MeV中子辐照试验。试验结果表明,中子注量累积达3 5×1011 cm-2时,该器件未发生单粒子锁定效应。但总线通信、模数转换等功能模块发生了多次单粒子功能中断,其中集成总线通信接口模块为最敏感单位,试验获得的器件中子单粒子效应截面为6 6×10-11 cm2。

     

    Abstract: Cosmic rays interact with atmospheric atoms to generate high energy neutron radiation, which threats to the electronic system working in the atmospheric space environment. Neutron induced single event effect (SEE) occurring in the key component of an electronic system (i.e. microprocessor) seriously affects the system reliability. To study neutron induced SEE of microprocessor, a SEE monitoring system was designed for a 65 nm CMOS microprocessor from Texas Instruments (TI). The designed system has the ability to monitor SEE events that occur in tested microprocessor, and record corresponding voltage/current change in real time. To minimize the irradiation caused disturbance in monitoring system, it consists of two modules connected with 1 2 m communication line in irradiation room. One module carrying tested microprocessor is placed close to the neutron source. Another module acting as the master control board is placed as far away from the neutron source and is shielded against gamma ray with lead bricks. The upper order computer and 24 V direct current (DC) power supply are placed outside of the irradiation room. As a key component of the SEE monitoring system, the master control board is composed of microcontroller unit (MCU), power management chip, operating voltage/current monitor and peripheral circuit. The master control board is able to continuously monitor the internal operating status of the tested microprocessor and the voltage/current fluctuation. The 24 V input voltage is converted into two way power supplies. One is used for monitoring MCUs on master control board. Another one is used for the device under test (DUT). Operating voltage/current values are transferred to the upper order computer through a serial port. When the detected voltage or current values exceed set thresholds, monitoring MCU would cut off power supply through a relay. The SEE monitoring system was test using 14 MeV neutrons produced by D T reactions. Single event functional interrupt (SEFI) was observed in inter integrated circuit (I2C), internal flash memory, analog to digital converter (ADC), arithmetic and logic unit (ALU), controller area network (CAN), general purpose input/output (GPIO) and other units, while single event latch up (SEL) is not detected. I2C is found to be the most sensitive unit. Neutron induced SEE in I2C bus leads to a significant operating current drop. Moreover, when one of eight tested I2C buses is blocked under neutron irradiation, the following tests for rest I2C bus will turn out to be “FAIL” too, which implies the SEE might occur at the control part of I2C. The SEE cross section of tested microprocessor is evaluated to be 6 6×10-11 cm2 with the data of neutron fluence up to 3 5×1011 cm-2.

     

  • [1] KOMURA K, AHMED N K, EL KAMEL A H, et al. Variation of environmental neutron flux with altitude and depth of both water and soil[J]. Nuclear Science and Techniques, 2004, 15(4): 248 256.
    [2] KOWATARI M, OHTA Y, SATOH S, et al. Evaluation of geomagnetic latitude dependence of the cosmic ray induced environmental neutrons in Japan[J]. Journal of Nuclear Science and Technology, 2007, 44(2): 114 120.
    [3] 范辉,郭刚,沈东军,等. 14 MeV中子引发SRAM器件单粒子效应实验研究[J]. 原子能科学技术,2015,49(1):171 175.
    FAN Hui, GUO Gang, SHEN Dongjun, et al. Experimental study on 14 MeV neutron induced single event effect in SRAMs[J]. Atomic Energy Science and Technology, 2015, 49(1): 171 175(in Chinese).
    [4] TABER A H, NORMAND E. Investigation and characterization of SEU effects and hardening strategies in avionics, 92 L75 020 2[R]. [S. l.]: [s. n.], 1995.
    [5] RAMOS P, VARGAS V, BAYLAC M, et al. Evaluating the SEE sensitivity of a 45 nm SOI multi core processor due to 14 MeV neutrons[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2 193 2 200.
    [6] FLAMENT O, BAGGIO J, DHOSE C, et al. 14 MeV neutron induced SEU in SRAM devices[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2 908 2 911.
    [7] DODD P E, SHANEYFELT M R, HORN K M, et al. SEU sensitive volumes in bulk and SOI SRAMs from first principles calculations and experiments[J]. IEEE Transaction on Nuclear Science, 2001, 48(6): 1 893 1 903.
    [8] AZAMBUJA J R, NAZAR G, RECH P, et al. Evaluating neutron induced SEE in SRAM based FPGA protected by hardware and software based fault tolerant techniques[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4 243 4 250.
    [9] 张振力,张振龙,韩建伟,等. 临近空间大气中子诱发电子器件单粒子翻转模拟研究[J]. 空间科学学报,2011,31(3):350 354.
    ZHANG Zhenli, ZHANG Zhenlong, HAN Jianwei, et al. Simulation study on single event upset induced by near space atmospheric neutron in electronic devices[J]. Chinese Journal of Space Sciences, 2011, 31(3): 350 354(in Chinese).
    [10] 马英起. 单粒子效应的脉冲激光试验研究[D]. 北京:中国科学院研究生院,2011.
    [11] 杨善潮,齐超,刘岩,等. 中子单粒子效应研究现状及进展[J]. 强激光与粒子束,2015,27(11):110201.
    YANG Shanchao, QI Chao, LIU Yan, et al. Review of neutron induced single event effects on semiconductor devices[J]. High Power Laser and Particle beams, 2015, 27(11): 110201(in Chinese).
    [12] 张付强,郭刚,刘建成,等. 中国原子能科学研究院100 MeV质子单粒子效应辐照装置试验能力研究[J]. 原子能科学技术,2018,52(11):2 101 2 105.
    ZHANG Fuqiang, GUO Gang, LIU Jiancheng, et al. Study on experimental ability of 100 MeV proton single event effect test facility in China Institute of Atomic Energy[J]. Atomic Energy Science and Technology, 2018, 52(11): 2 101 2 105(in Chinese).
    [13] 郭红霞,罗尹虹,姚志斌,等. 亚微米特征工艺尺寸静态随机存储器单粒子效应实验研究[J]. 原子能科学技术,2010,44(12):1 498 1 504.
    GUO Hongxia, LUO Yinhong, YAO Zhibin, et al. Experimental research of SEU and SEL in high density SRAMs with sub micro feature sizes[J]. Atomic Energy Science and Technology, 2010, 44(12): 1 498 1 504(in Chinese).
    [14] 郑宏超,岳素格,董攀,等. 微处理器高低速模式下的单粒子功能错误分析[J]. 微电子学与计算机,2014,31(7):18 21.
    ZHENG Hongchao, YUE Suge, DONG Pan, et al. The single event function error analysis of CPU in high/low speed modes[J]. Microelectronics & Computer, 2014, 31(7): 18 21(in Chinese).
    [15] 高洁,李强. 星用微处理器在轨单粒子翻转率预估方法研究[J]. 核技术,2012,35(3):201 205.
    GAO Jie, LI Qiang. An SEU rate prediction method for microprocessors of space applications[J]. Nuclear Techniques, 2012, 35(3): 201 205(in Chinese).
  • 期刊类型引用(6)

    1. 袁国军,李兴隆,肖思敏,张莉,黄晓鹏,吴建华,刘阳. 基于PXI标准的功率器件总剂量效应测试系统研制. 核电子学与探测技术. 2024(03): 415-419 . 百度学术
    2. 程杰,洪婉君,伍江雄,温显超,魏亚峰,俞宙,刘杰,叶兵,郭刚. 模拟混合视频处理电路单粒子效应测试系统设计. 微电子学. 2024(03): 487-491 . 百度学术
    3. 买梓奇,李宏伟,朱翔,韩建伟,赵旭. 基于FPGA的COTS器件辐射效应测试系统. 半导体技术. 2023(04): 340-346 . 百度学术
    4. 曾超,许献国,钟乐. 抗辐射电子学研究综述. 太赫兹科学与电子信息学报. 2023(04): 452-471 . 百度学术
    5. 邹和仕. 基于RISCV-32I的微处理器的设计与实现. 中国新通信. 2023(07): 7-9 . 百度学术
    6. 魏亚峰,温显超,郭刚,梅博,康成蓥,刘璐,伍江雄,陈超,俞宙,王健安,刘杰. 高速A/D转换器单粒子效应实时评估系统和方法研究. 微电子学. 2023(06): 1017-1022 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  139
  • HTML全文浏览量:  3
  • PDF下载量:  200
  • 被引次数: 7
出版历程
  • 刊出日期:  2022-04-19

目录

    /

    返回文章
    返回