不凝性气体对高温锂热管传热特性的影响研究

张明昊, 王成龙, 田智星, 郭凯伦, 田文喜, 苏光辉, 秋穗正

张明昊, 王成龙, 田智星, 郭凯伦, 田文喜, 苏光辉, 秋穗正. 不凝性气体对高温锂热管传热特性的影响研究[J]. 原子能科学技术, 2022, 56(6): 1094-1103. DOI: 10.7538/yzk.2021.youxian.0901
引用本文: 张明昊, 王成龙, 田智星, 郭凯伦, 田文喜, 苏光辉, 秋穗正. 不凝性气体对高温锂热管传热特性的影响研究[J]. 原子能科学技术, 2022, 56(6): 1094-1103. DOI: 10.7538/yzk.2021.youxian.0901
ZHANG Minghao, WANG Chenglong, TIAN Zhixing, GUO Kailun, TIAN Wenxi, SU Guanghui, QIU Suizheng. Study on Influence of Non-condensable Gas on Heat Transfer Characteristics of High Temperature Lithium Heat Pipe[J]. Atomic Energy Science and Technology, 2022, 56(6): 1094-1103. DOI: 10.7538/yzk.2021.youxian.0901
Citation: ZHANG Minghao, WANG Chenglong, TIAN Zhixing, GUO Kailun, TIAN Wenxi, SU Guanghui, QIU Suizheng. Study on Influence of Non-condensable Gas on Heat Transfer Characteristics of High Temperature Lithium Heat Pipe[J]. Atomic Energy Science and Technology, 2022, 56(6): 1094-1103. DOI: 10.7538/yzk.2021.youxian.0901

不凝性气体对高温锂热管传热特性的影响研究

Study on Influence of Non-condensable Gas on Heat Transfer Characteristics of High Temperature Lithium Heat Pipe

  • 摘要: 热管作为一种具有高热导率的传热装置,工作核心在于其内部工作流体的蒸发和冷凝。若热管工作过程中气腔内存在不凝性气体,主流区中蒸气和不凝性气体在对流运动的作用下将一起移动到气-液分界面,不凝性气体的存在阻碍了工作流体在气-液交界面处的正常冷凝。本文基于热阻网络法添加了不凝性气体区域传热模型,研究了不凝性气体对高温锂热管稳态传热特性的影响。结果表明,热管达到稳态时不凝性气体的存在缩短了热管的有效传热长度,破坏了热管的等温性和良好的传热效率。此外随着不凝性气体体积份额的增大,不凝性气体区域温度降低幅度越大;随着热管蒸发段输入功率的增大,热管正常工作区域整体温度越高,相同质量的不凝性气体占据的体积份额越小,热管壁面温度出现明显温度梯度降低的位置随着功率升高而向下游移动。

     

    Abstract: As the key component of heat pipe cooling reactor, heat pipe has the advantages of high heat transfer efficiency and excellent isothermal performance. The high working temperature of alkali metal high temperature heat pipe has broad application prospects in the thermal protection of hypersonic vehicle, space nuclear reactor cooling, solar energy utilization and so on. At the same time, the high temperature heat pipe can also be applied to the radiation heat dissipation system of space nuclear power system, the main cooling mode of nuclear powered unmanned underwater vehicle and the waste heat removal device of advanced reactor system. It is the best choice with high heat transfer efficiency and high safety, and can effectively meet the heat dissipation requirements of the nuclear power system of future military and civil equipment systems, overcome the shortcomings of complex structure and insufficient passive safety of traditional nuclear power system. In a word, as a kind of heat transfer device with high thermal conductivity, the core part of heat pipe lies in the evaporation and condensation of its internal working fluid. If there is non-condensable gas in the gas cavity during the working process of the heat pipe, the steam and non-condensable gas in the main flow area will move to the gas-liquid interface together under the action of convective motion. The existence of non-condensable gas hinders the normal condensation of the working fluid at the gas-liquid interface, shortens the effective length of the heat pipe, and breaks the isothermal property of the heat pipe. The area where the non-condensable gas accumulates is called the “inactive” area and has poor thermal conductivity. Therefore, in order to accelerate the in-stack application of high temperature heat pipes, the degree of influence of non-condensable gas on the heat transfer characteristics of high temperature heat pipes is a major problem which is urgent to be settled and evaluated. In this paper, a non-condensable gas area heat transfer model was added based on the thermal resistance network method, and the effect of non-condensable gas on the steady-state heat transfer characteristics of high temperature lithium heat pipes was studied. The results show that with the increase of the volume fraction of non-condensable gas, the temperature of non-condensable gas area decreases more greatly; with the increase of the input power of the evaporation section of the heat pipe, the higher the overall temperature of the normal working area of the heat pipe, the smaller the volume fraction of the same mass of non-condensable gas, and the position where the temperature gradient of the heat pipe wall decreases obviously moves downstream with the increase of power.

     

  • [1] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019,40(4):1-8.
    YU Hongxing, MA Yugao, ZHANG Zhuohua, et al. Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 2019, 40(4): 1-8(in Chinese).
    [2] WANG C, TANG S, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175(5): 115299.
    [3] MA Y, TIAN C, YU H, et al. Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor[J]. Progress in Nuclear Energy, 2021, 140: 103904.
    [4] WANG C, LIU X, LIU M, et al. Experimental study on heat transfer limit of high temperature potassium heat pipe for advanced reactors[J]. Annals of Nuclear Energy, 2021, 151(746): 107935.
    [5] SUN H, TANG S, WANG C, et al. Numerical simulation of a small high-temperature heat pipe cooled reactor with CFD methodology[J]. Nuclear Engineering and Design, 2020, 370: 110907.
    [6] 洪芳柏. 含不凝性气体热管的传热性能研究[J]. 石油化工设备, 1986,15(1):21-28.
    HONG Fangbai. Research on heat transfer performance of heat pipe containing non-condensable gas[J]. Petro-chemical Equipment, 1986, 15(1): 21-28(in Chinese).
    [7] COLWELL G T, WILLIAMS C L, HSU J C, et al. A study of noncondensable effects in a heat pipe[J]. Nuclear Technology, 1971, 10(3): 293-300.
    [8] ANAND A R. Investigations on effect of noncondensable gas in a loop heat pipe with flat evaporator on deprime[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118531.
    [9] LING J, CAO Y. Closed-form analytical solutions for radially rotating miniature high-temperature heat pipes including non-condensable gas effects[J]. International Journal of Heat and Mass Transfer, 2000, 43(19): 3661-3671.
    [10] HOANG T, BALDAUFF R, MAHONY D. Mathematical modeling of variable conductance heat pipes for steady state and transient operation[C]∥Aiaa Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. [S. l.]: [s. n.], 2011.
    [11] EL-GENK M, TOURNIER J M. Challenges and fundamentals of modeling heat pipes’ startup from a frozen state[J]. AIP Conference Proceedings, 2002, 608(1): 127-138.
    [12] CHI S W. Heat pipe theory and practice: A sourcebook[M]. Washington D. C.: Hemisphere Publishing Corp., 1976.
    [13] KELLY R, DREYFUS R W J S S. On the effect of Knudsen-layer formation on studies of vaporization, sputtering, and desorption[J]. Surface Science, 1988, 198(1): 263-276.
    [14] PONNAPPAN R, CHANG W S. Startup performance of a liquid-metal heat pipe in near-vacuum and gas-loaded modes[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 164-171.
    [15] 张明昊. 不凝性气体对高温锂热管传热特性影响研究[D]. 西安:西安交通大学,2021.
  • 期刊类型引用(1)

    1. 徐亮,孙子能,席雷,高建民. 先进重型燃气轮机冷却技术现状及发展. 燃气轮机技术. 2022(04): 1-10 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  260
  • HTML全文浏览量:  0
  • PDF下载量:  231
  • 被引次数: 5
出版历程
  • 刊出日期:  2022-06-19

目录

    /

    返回文章
    返回