华龙一号反应堆冷却剂系统抗震设计关键技术

熊夫睿, 沈平川, 王新军, 叶献辉, 张毅雄

熊夫睿, 沈平川, 王新军, 叶献辉, 张毅雄. 华龙一号反应堆冷却剂系统抗震设计关键技术[J]. 原子能科学技术, 2022, 56(zengkan1): 83-91. DOI: 10.7538/yzk.2021.youxian.0959
引用本文: 熊夫睿, 沈平川, 王新军, 叶献辉, 张毅雄. 华龙一号反应堆冷却剂系统抗震设计关键技术[J]. 原子能科学技术, 2022, 56(zengkan1): 83-91. DOI: 10.7538/yzk.2021.youxian.0959
XIONG Furui, SHEN Pingchuan, WANG Xinjun, YE Xianhui, ZHANG Yixiong. Key Technology of HPR1000 Reactor Coolant System Seismic Resistance Design[J]. Atomic Energy Science and Technology, 2022, 56(zengkan1): 83-91. DOI: 10.7538/yzk.2021.youxian.0959
Citation: XIONG Furui, SHEN Pingchuan, WANG Xinjun, YE Xianhui, ZHANG Yixiong. Key Technology of HPR1000 Reactor Coolant System Seismic Resistance Design[J]. Atomic Energy Science and Technology, 2022, 56(zengkan1): 83-91. DOI: 10.7538/yzk.2021.youxian.0959

华龙一号反应堆冷却剂系统抗震设计关键技术

Key Technology of HPR1000 Reactor Coolant System Seismic Resistance Design

  • 摘要: 华龙一号是满足三代核电技术指标要求的自主化百万千瓦压水堆核电机组,其抗震能力达到0.3g。为达到该抗震指标,对反应堆冷却剂系统在关键设备结构加强及优化、管道破前漏技术应用、抗震载荷分配精细化计算、抗震设计标准化、抗震裕度评价等方面开展了关键技术研究,建立了一套抗震能力提升的策略,完成了华龙一号反应堆冷却剂系统抗震优化和评估工作。相关技术已在华龙批量生产堆型中得以应用。

     

    Abstract: HPR1000 (Hualong No.1) was developed upon over 30 years of pressurized water reactor (PWR) R&D experience of CNNC. It has fully absorbed the advanced design philosophy of GENⅢ nuclear power and the overall engineering experiences including design, construction, testing and operating among China’s current PWR fleet. HPR1000 satisfies the 1 000 MWe power level GENⅢ technical specifications with the 0.3g seismic resistance capability. In order to reach this capability, several key technologies were developed including structural reinforcement of key equipment, leakbeforebreak (LBB) application on piping, refined calculation of reactor coolant system (RCS) load distribution, standard seismic resistance design practice and safety margin evaluation. Upon these technologies, a set of seismic resistance improvement strategy was devised that guides the accomplishment of RCS seismic resistance evaluation and optimization. The technologies reported in this paper are applied in successive Hualong projects. Short descriptions of abovementioned key technologies that leads to successful seismic resistance design are presented herein: 1) Structural reinforcement are adopted at key locations to enable improved functional requirement, such as the enlarged nozzle diameter and wall thickness of reactor pressure vessel, and such improvement also facilitates stronger structural integrity upon resisting dynamical loadings; 2) The utilization of LBB technology on RCS main pipe and the surge pipe alleviates the load considerations under the loss of coolant accident (LOCA), which is usually considered in conjunction with safe shutdown earthquake (SSE) load for GENⅡ nuclear power plant RCS structural analyses, and the introduction of LBB thus greatly reduces the conservatism on RCS mechanical analysis; 3) The load distribution modeling and computation. Multifidelity load calculation modeling strategy is adopted in this study to enable the capture of main dynamical responses at different resolutions. Interfacial loading data are exchanged across each level for quick iterations of structural design and optimization; 4) Standardization of seismic environment. This is achieved via comparative study of seismic response spectrum among a set of representative rock conditions. Envelop spectrum is proposed herein with adequate conservatism that will be used for future plant design; 5) Safety margin analysis (SMA). The essence of SMA is to estimate the potential of seismic resistance on key components in RCS. SMA is a key part of plant probability safety analysis (PSA) procedure. High confidence low probability failure (HCLPF) is used to quantify how much margin a component may have. Such information is helpful on learning the overall capability of resisting earthquake of the entire RCS. Moreover, SMA results reveal the vulnerability of RCS components.

     

  • [1] 熊夫睿,叶献辉. 模态应变能在反应堆及一回路系统动力分析中的应用[J]. 核动力工程,2019,40(3):205-209.
    XIONG Furui, YE Xianhui. Application of modal strain energy on reactor coolant system dynamical analysis[J]. Nuclear Power Engineering, 2019, 40(3): 205-209(in Chinese).
    [2] 何风,吕勇波,艾红雷,等. LBB技术在核电站管道系统中的应用[J]. 管道技术与设备,2016,2:1-4.
    HE Feng, LV Yongbo, AI Honglei, et al. Application of LBB technology on nuclear power plant piping systems[J]. Piping Technology and Equipment, 2016, 2: 1-4(in Chinese).
    [3] 孙英学,吴万军,谢海,等. “华龙一号”主管道和波动管LBB设计[C]∥中国核科学技术进展报告(第六卷). 北京:中国原子能出版社,2019:397-403.
    [4] 黄茜,张毅雄,沈平川,等. 反应堆结构的三维非线性地震分析[J]. 核动力工程,2016,37(5):19-23.
    HUANG Qian, ZHANG Yixiong, SHEN Pingchuan, et al. Three dimensional nonlinear seismic analysis of reactor structure[J]. Nuclear Power Engineering, 2016, 37(5): 19-23(in Chinese).
    [5] 齐欢欢,沈平川,吴万军,等. 燃料组件导向管事故工况应力计算方法研究[J]. 应用数学与力学,2016,37(5):534-541.
    QI Huanhuan, SHEN Pingchuan, WU Wanjun, et al. Study on stress calculation method of fuel assembly guide tube under accident[J]. Applied Mathematics and Mechanics, 2016, 37(5): 534-541(in Chinese).
    [6] 熊夫睿,叶献辉. 反应堆冷却剂系统动力分析关键参数的敏感性分析[J]. 核动力工程,2017,38(S2):42-45.
    XIONG Furui, YE Xianhui. Sensitivity analysis of key parameters of reactor coolant system dynamical analysis[J]. Nuclear Power Engineering, 2017, 38(S2): 42-45(in Chinese).
    [7] 黄茜,熊夫睿,王碧浩,等. 地震载荷下反应堆系统的不确定性量化[J]. 原子能科学技术,2019,53(5):899-905.
    HUANG Qian, XIONG Furui, WANG Bihao, et al. Uncertainty quantification of reactor system under seismic load[J]. Atomic Energy Science and Technology, 2019, 53(5): 899-905(in Chinese).
    [8] 王桂萱,白丽丽,尹训强,等. 核电厂标准化地基动参数调研及土层反应分析初步研究[J]. 工程抗震与加固改进,2019,41(6):154-163.
    WANG Guixuan, BAI Lili, YIN Xunqiang, et al. Preliminary study of nuclear power plant standardized base dynamical parameter investigation and rock layer response analysis[J]. Engineering Seismic Resistance and Reinforcement, 2019, 41(6): 154-163(in Chinese).
    [9] 王晓磊,吕大刚. 核电厂抗震裕量评估方法研究综述[J]. 中国安全科学学报,2015,25(12):116-122.
    WANG Xiaolei, LV Dagang. Review of nuclear power plant seismic margin analysis[J]. China Safety Science, 2015, 25(12): 116-122(in Chinese).
    [10] 蔡逢春,梁艳仙,叶献辉. 蒸汽发生器非线性支承系统的抗震能力分析[J]. 原子能科学技术,2015,49(7):1260-1265.
    CAI Fengchun, LIANG Yanxian, YE Xianhui. Seismic analysis of nonlinear support of steam generator[J]. Atomic Energy Science and Technology, 2015, 49(7): 1260-1265(in Chinese).
    [11] 叶献辉,蔡逢春,黄茜,等. 稳压器非线性支撑的HCLPF值计算方法研究[J]. 核动力工程,2015,36(S2):135-137.
    YE Xianhui, CAI Fengchun, HUANG Qian, et al. HCLPF calculation of nonlinear pressurizer support[J]. Nuclear Power Engineering, 2015, 36(S2): 135-137(in Chinese).
  • 期刊类型引用(1)

    1. 薛睿渊,张永楠,张希恒,俞树荣,孟晓桥,余建平. 核电阀门管系高保真动力学模型修正技术研究. 核动力工程. 2024(01): 130-138 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  197
  • HTML全文浏览量:  2
  • PDF下载量:  215
  • 被引次数: 3
出版历程
  • 刊出日期:  2022-06-19

目录

    /

    返回文章
    返回