[1] |
李勇霖,陈荣华,田文喜,等. 基于MPS方法的共晶反应研究[C]∥第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. [出版地不详]:[出版者不详],2017:1028-1036.
|
[2] |
KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3): 421-434.
|
[3] |
张明昊,陈荣华,郭凯伦,等. 基于粒子法的流量脉动条件下单气泡上升行为研究[J]. 核动力工程,2019,40(S2):15-20. ZHANG Minghao, CHEN Ronghua, GUO Kailun, et al. Research on single bubble rising behavior under flow pulsation condition based on particle method[J]. Nuclear Power Engineering, 2019, 40(S2): 15-20(in Chinese).
|
[4] |
ZHU Y, QIU Z, XIONG J, et al. Verification and validation of MPS potential force interface tension model for stratification simulation[J]. Annals of Nuclear Energy, 2020, 148: 107753.
|
[5] |
XIONG J, ZHU Y, ZHANG T, et al. Lagrangian simulation of three-dimensional macro-scale melting based on enthalpy method[J]. Computers & Fluids, 2019, 190: 168-177.
|
[6] |
ZHU Y, XIONG J, YANG Y. MPS eutectic reaction model development for severe accident phenomenon simulation[J]. Nuclear Engineering and Technology, 2020, 53(3): 833-841.
|
[7] |
TANG Z, WAN D, CHEN G, et al. Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method[J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 355-364.
|
[8] |
CHEN X, SUN Z G, LIU L, et al. Improved MPS method with variable-size particles[J]. International Journal for Numerical Methods in Fluids, 2016, 80(6): 358-374.
|
[9] |
SHIBATA K, KOSHIZUKA S, MATSUNAGA T, et al. The overlapping particle technique for multi-resolution simulation of particle methods[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 325: 434-462.
|
[10] |
HARADA T, KOSHIZUKA S, SHIMAZAKI K. Improvement of wall boundary calculation model for MPS method[J]. Transactions of the Japan Society for Computational Engineering and Science, 2008: 20080006.
|
[11] |
ZHANG T, KOSHIZUKA S, MUROTANI K, et al. Improvement of boundary conditions for non-planar boundaries represented by polygons with an initial particle arrangement technique[J]. International Journal of Computational Fluid Dynamics, 2016, 30(2): 1-21.
|
[12] |
ZHANG T, KOSHIZUKA S, MUROTANI K, et al. Improvement of pressure distribution to arbitrary geometry with boundary condition represented by polygons in particle method[J]. International Journal for Numerical Methods in Engineering, 2017, 112(7): 685-710.
|
[13] |
MITSUME N, YAMADA T, YOSHIMURA S. Parallel analysis system for free-surface flow using MPS method with explicitly represented polygon wall boundary model[J]. Computational Particle Mechanics, 2020, 7(2): 279-290.
|
[14] |
KOSHIZUKA S, AND A N, OKA Y. Numerical analysis of breaking waves using the moving particle semi-implicit method[J]. International Journal for Numerical Methods in Fluids, 1998, 26(7): 751-769.
|
[15] |
TANAKA M, CARDOSO R, BAHA H, et al. Multi-resolution MPS method[J]. Journal of Computational Physics, 2018, 359: 106-136.
|
[16] |
MITSUME N, YOSHIMURA S, MUROTANI K, et al. Explicitly represented polygon wall boundary model for the explicit MPS method[J]. Computational Particle Mechanics, 2015, 2(1): 73-89.
|
[17] |
SHIBATA K, MASAIE I, KONDO M, et al. Improved pressure calculation for the moving particle semi-implicit method[J]. Computational Particle Mechanics, 2015, 2(1): 91-108.
|
[18] |
MARTIN J, MOYCE W, MARTIN J, et al. Some gravity wave problems in the motion of perfect liquids, Part Ⅳ: An experimental study of the collapse of liquid columns on a rigid horizontal plane[J]. Philosophical Transactions of the Royal Society of London, 1952, 244(882): 312-324.
|
[19] |
HU C, KASHIWAGI M. A CIP method for numerical simulations of violent free surface flows[J]. Journal of Marine Science & Technology, 2004, 9(4): 143-157.
|