C波段6 MeV轴耦合驻波加速管的研制

杨誉, 杨京鹤, 余国龙, 韩广文, 吕约澎, 王博, 崔爱军, 吴青峰, 王常强, 范雨轩, 朱志斌

杨誉, 杨京鹤, 余国龙, 韩广文, 吕约澎, 王博, 崔爱军, 吴青峰, 王常强, 范雨轩, 朱志斌. C波段6 MeV轴耦合驻波加速管的研制[J]. 原子能科学技术, 2022, 56(12): 2773-2779. DOI: 10.7538/yzk.2022.youxian.0179
引用本文: 杨誉, 杨京鹤, 余国龙, 韩广文, 吕约澎, 王博, 崔爱军, 吴青峰, 王常强, 范雨轩, 朱志斌. C波段6 MeV轴耦合驻波加速管的研制[J]. 原子能科学技术, 2022, 56(12): 2773-2779. DOI: 10.7538/yzk.2022.youxian.0179
YANG Yu, YANG Jinghe, YU Guolong, HAN Guangwen, LYU Yuepeng, WANG Bo, CUI Aijun, WU Qingfeng, WANG Changqiang, FAN Yuxuan, ZHU Zhibin. Development of C-band 6 MeV On-axis Coupled Standing Wave Accelerating Tube[J]. Atomic Energy Science and Technology, 2022, 56(12): 2773-2779. DOI: 10.7538/yzk.2022.youxian.0179
Citation: YANG Yu, YANG Jinghe, YU Guolong, HAN Guangwen, LYU Yuepeng, WANG Bo, CUI Aijun, WU Qingfeng, WANG Changqiang, FAN Yuxuan, ZHU Zhibin. Development of C-band 6 MeV On-axis Coupled Standing Wave Accelerating Tube[J]. Atomic Energy Science and Technology, 2022, 56(12): 2773-2779. DOI: 10.7538/yzk.2022.youxian.0179

C波段6 MeV轴耦合驻波加速管的研制

Development of C-band 6 MeV On-axis Coupled Standing Wave Accelerating Tube

  • 摘要: 为发展紧凑型电子直线加速器,本文研制了一支C波段轴耦合驻波加速管。该加速管包括3个聚束腔单元和9个均匀加速腔单元,总长度约284 mm。根据射频相位聚焦原理进行了初步物理设计,并对整管腔链进行等效电路分析及仿真优化,从而确定了尺寸参数,最后进行了冷测调配及高功率出束实验。基于该流程研发了C波段驻波加速管,其工作频率为5 713.6 MHz,束流能量可达6 MeV,脉冲流强为84.5 mA。

     

    Abstract: In order to develop a compact electron linear accelerator, a C-band on-axis coupled standing wave accelerating tube operating at the frequency of 5 712 MHz was developed in this paper. The designed beam energy is 6 MeV, and the designed pulse beam current intensity is greater than 80 mA. Firstly, in order to achieve the compact goal, the beam dynamics design was carried out based on the RF phase focusing theory. By designing the phase velocity distribution and electric field distribution in the whole tube reasonably, the longitudinal bunching and transverse focusing of the electron beam were realized simultaneously without external focusing magnetic field. Secondly, the structure of this Cband accelerating tube was optimized after establishing the equivalent circuit model to obtain the required electric field distribution. This accelerating tube adopted π/2 mode onaxis coupled standing wave structure and was composed of three bunching cavities and nine uniform accelerating cavities with a total length of about 284 mm. Through the analysis of the equivalent model, the relationship between the cavity parameters and the coupling coefficient between adjacent cavities were revealed. After adjusting the basic parameters of each cavity, the structure of this tube was determined and the required electric field distribution was obtained. Then the input coupler was designed to match the coupling requirement and the RF field got from the simulation of the whole tube was used in the beam dynamics validation calculation. At last, cavities were brazed together after tuned to the designed frequency and the cold test and highpower test of this tube were carried out. The reflection parameters of this tube were tested in the vacuum condition. The test results show that the operating frequency is 5 713.6 MHz, the reflection coefficient at the operating frequency is -16.5 dB, and the corresponding input coupling is 1.35, which meets the designed requirements. The electric field distribution was tested according to the bead-pull measurement method and it’s consistent with the designed field distribution. In the highpower test, the tube was driven by a C-band magnetron which delivered a 2.5 MW peak power, 4 μs width pulse with a repetition rate of 250 Hz. An Xray target was placed at the beam exit and the maximum dose rate at 1 m behind the target is 845 cGy/min, which indicates that the beam pulse current is 84.5 mA. Based on the halfvaluelayer measurement methods, the test result shows the electron beam energy can reach 6 MeV. These test results verify the validity of the development process of Cband 6 MeV onaxis coupled standing wave accelerating tube.

     

  • [1] 柏伟,许州,金晓,等. C波段2 MeV驻波加速管物理设计[J]. 强激光与粒子束,2005,17(6):917-920.
    BAI Wei, XU Zhou, JIN Xiao, et al. Physical design of 2 MeV standing wave accelerating tube[J]. High Power Laser and Particle Beams, 2005, 17(6): 917-920(in Chinese).
    [2] 靳清秀,童德春,陶小魁,等. C波段9 MeV驻波电子直线加速管设计[J]. 核技术,2008,31(3):178-180.
    JIN Qingxiu, TONG Dechun, TAO Xiaokui, et al. Development of accelerating structure of 9 MeV C-band electron linac[J]. Nuclear Techniques, 2008, 31(3): 178180(in Chinese).
    [3] 李国华,陈怀璧,郑曙昕,等. X波段2 MeV行波电子直线加速管的物理设计[J]. 原子能科学技术,2006,40(4):470-474.
    LI Guohua, CHEN Huaibi, ZHENG Shuxin, et al. Physical design of X-band 2 MeV traveling wave electron linac accelerator tube[J]. Atomic Energy Science and Technology, 2006, 40(4): 470-474(in Chinese).
    [4] 孙翔,童德春,林郁正. X-波段轴耦合驻波电子直线加速管物理设计与研究[J]. 原子能科学技术,1998,32(4):7-11.
    SUN Xiang, TONG Dechun, LIN Yuzheng. Physical design and study on X-band SW on-axis electron linac[J]. Atomic Energy Science and Technology, 1998, 32(4): 7-11(in Chinese).
    [5] MILLER R H, DERUYTER H, FOWKES W R, et al. RF phase focusing in portable X-band, linear accelerators[J]. IEEE Transactions on Nuclear Science, 1985, 32(5): 3231-3233.
    [6] NAGLE D E, KNAPP E A, KNAPP B C. Coupled resonator model for standing wave accelerator tanks[J]. Review of Scientific Instruments, 1967, 38(11): 1583-1587.
    [7] 靳清秀,童德春,林郁正,等. 14 MeV医用驻波加速管的微波调试[J]. 原子能科学技术,1997,31(1):6-11.
    JIN Qingxiu, TONG Dechun, LIN Yuzheng, et al. Microwave measurement and adjustment on 14 MeV standing wave guide for medical accelerator[J]. Atomic Energy Science and Technology, 1997, 31(1): 6-11(in Chinese).
    [8] FLOETTMANN K. A space charge tracking algorithm[EB/OL]. http:∥www.desy.de/*mpyflo.
    [9] 刘勇涛,韩金刚,牛焕焕. C波段6 MeV驻波加速管的调谐与匹配[J]. 真空电子技术,2018(3):46-49.
    LIU Yongtao, HAN Jingang, NIU Huanhuan. Tuning and matching of Cband 6 MeV linear accelerating tube[J]. Vacuum Electronics, 2018(3): 4649(in Chinese).
    [10] MAIER L C, SLATER J C. Field strength measurements in resonant cavities[J]. Journal of Applied Physics, 1952, 23(1): 68-77.
    [11] AMATO J C, HERRMANN H. Improved method for measuring the electric fields in microwave cavity resonators[J]. Review of Scientific Instruments, 1985, 56(5): 696-699.
    [12] National council on radiation protection and measurements[R]. Washington: NCRP, 1977.
  • 期刊类型引用(3)

    1. 李诗琳,杨京鹤,范雨轩,王博,杨誉,雷瀚. C波段9 MeV小焦点驻波电子直线加速结构设计. 原子能科学技术. 2025(01): 213-219 . 本站查看
    2. 杨誉,杨京鹤,王常强,刘秀莹,韩广文,吴青峰,范雨轩,王博,雷瀚,毕振亮,陈伟,崔爱军,于国龙,吕约澎,王国宝,张立锋,朱志斌. 应用型电子直线加速器用C波段大功率速调管研究与开发. 原子能科学技术. 2024(S1): 167-173 . 本站查看
    3. 杨誉,杨京鹤,王常强,范雨轩,刘秀莹,韩广文,崔爱军,吕约澎,王国宝,吴青峰,张立锋,朱志斌. 应用型电子直线加速器用C波段大功率速调管物理设计. 原子能科学技术. 2023(S1): 289-296 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  174
  • HTML全文浏览量:  0
  • PDF下载量:  151
  • 被引次数: 3
出版历程
  • 刊出日期:  2022-12-19

目录

    /

    返回文章
    返回