基于巴西圆盘试验的国产石墨拉伸强度及特性研究

Study on Tensile Strength and Its Characteristics of Domestic Graphite Based on Brazilian Disc Test

  • 摘要: 拉伸强度是石墨构件设计和结构完整性评价的一个重要参数,为研究国产石墨的拉伸强度及试样尺寸、石墨颗粒粒径、微观组织等对拉伸强度的影响,本文选用3种典型国产石墨,即粗颗粒、细颗粒和超细颗粒石墨,对每种石墨的4种不同尺寸规格的试样在拉伸试样机上开展巴西圆盘试验,采用高速相机捕捉劈裂破坏过程,使用扫描电镜观测断口形貌。对比分析了裂纹的扩展过程及破坏形式,测得了拉伸强度并分析了其分布特点,研究了试样尺寸、石墨颗粒粒径、微观组织等对拉伸强度的影响。结果表明:石墨劈裂试验过程满足巴西圆盘试验有效性的要求,试样尺寸越大,石墨颗粒粒径越大,越易产生二次裂纹和局部压缩破坏;通常石墨拉伸强度随试样尺寸的增大而增大,但试样尺寸较小时要综合考虑试样尺寸和颗粒粒径的影响,且材料密度越小尺寸效应越明显;石墨拉伸强度随颗粒粒径的增大呈下降趋势,表现出显著的颗粒粒径效应;石墨拉伸强度具有较大的分散性,其与石墨颗粒粒径表现出明显的相关性,细颗粒石墨拉伸强度的均匀性较粗颗粒石墨好得多,同时超细颗粒石墨明显优于细颗粒石墨;石墨的微观组织对拉伸强度有显著影响,粗颗粒石墨有较多较大的原生孔隙等缺陷,其拉伸强度最小,细颗粒石墨次之,超细颗粒石墨最大。

     

    Abstract: Tensile strength of graphite is a crucial criterion in the design and structural integrity evaluation of graphite components in reactors. To investigate the tensile strength of domestic graphite, as well as the effect of specimen size, grain size and microstructure on tensile strength, three kinds of domestic graphites including coarse-grained, fine-grained and ultrafine-grained graphite that may be used in reactor were selected. The Brazilian disc tests of three graphites were performed on Φ6 mm×3 mm, Φ12.7 mm×6.35 mm, Φ24 mm×12 mm and Φ40 mm×20 mm Brazilian disc specimens in the WDW-50 tensile testing machine at a speed of 0.1 mm/min. Force sensor was used to measure the force in specimen. Photoelectric encoder controller was used to determine the displacement of specimen. The tensile failure process of specimens was observed by high speed camera test system. The failure morphologies were observed by SEM (scanning electron microscopy) to study crack propagation behaviors of specimens. The tensile strength and its distribution of graphites were compared, and the effects of specimen size, particle size, microstructure and other factors on tensile strength of graphite were studied. The results indicate that the splitting test of graphite meets the validity requirements of the Brazilian disc test. The larger the specimen size and particle size of graphite, the easier it is to induce secondary cracks and local compression failure. The tensile strength of graphite usually improves as specimen size increases, but the effect of specimen size and particle size should be considered comprehensively when specimen size is small. The specimen size effect of tensile strength becomes more conspicuous as graphite density decreases. Coarsegrained graphite’s tensile strength is the most sensitive to specimen size, finegrained graphite is the second and ultrafinegrained graphite is the weakest. The tensile strength of graphite decreases exponentially with the increase of particle size, showing significant particle size effect. The tensile strength of coarse-grained, fine graind and ultrafine-grained graphite increases sharply with the decrease of particle size. The dispersion of graphite’s tensile strength is noticeable, and it has an obvious correlation with graphite’s particle size. According to statistical analysis by using Weibull distribution model, the tensile strength dispersion of finegrained graphite is substantially better than that of coarsegrained graphite, and ultra-fine-grained graphite is better than fine-grained graphite. The microstructure of graphite has a significant effect on the tensile strength. There are many defects such as large primary pores in coarsegrained graphite, so its tensile strength is the smallest, followed by finegrained graphite, and ultrafinegrained graphite is the largest.

     

/

返回文章
返回