一套反宇宙射线HPGe γ谱仪系统的建立

朱宇琛, 李奇, 樊元庆, 赵允刚, 王世联, 张新军, 贾怀茂, 张瑞芹, 李芮莹, 周剑良

朱宇琛, 李奇, 樊元庆, 赵允刚, 王世联, 张新军, 贾怀茂, 张瑞芹, 李芮莹, 周剑良. 一套反宇宙射线HPGe γ谱仪系统的建立[J]. 原子能科学技术, 2023, 57(3): 639-645. DOI: 10.7538/yzk.2022.youxian.0243
引用本文: 朱宇琛, 李奇, 樊元庆, 赵允刚, 王世联, 张新军, 贾怀茂, 张瑞芹, 李芮莹, 周剑良. 一套反宇宙射线HPGe γ谱仪系统的建立[J]. 原子能科学技术, 2023, 57(3): 639-645. DOI: 10.7538/yzk.2022.youxian.0243
ZHU Yuchen, LI Qi, FAN Yuanqing, ZHAO Yungang, WANG Shilian, ZHANG Xinjun, JIA Huaimao, ZHANG Ruiqin, LI Ruiying, ZHOU Jianliang. Establishment of Anti-cosmic Ray HPGe Gamma Spectrometer[J]. Atomic Energy Science and Technology, 2023, 57(3): 639-645. DOI: 10.7538/yzk.2022.youxian.0243
Citation: ZHU Yuchen, LI Qi, FAN Yuanqing, ZHAO Yungang, WANG Shilian, ZHANG Xinjun, JIA Huaimao, ZHANG Ruiqin, LI Ruiying, ZHOU Jianliang. Establishment of Anti-cosmic Ray HPGe Gamma Spectrometer[J]. Atomic Energy Science and Technology, 2023, 57(3): 639-645. DOI: 10.7538/yzk.2022.youxian.0243

一套反宇宙射线HPGe γ谱仪系统的建立

Establishment of Anti-cosmic Ray HPGe Gamma Spectrometer

  • 摘要: 放射性核素监测是全面禁止核试验条约(CTBT)国际监测系统(IMS)4种监测手段之一。针对放射性核素样品活度低的特点,研制了一套反宇宙射线HPGe γ谱仪系统。相对于原始的γ能谱,在15~2 700 keV能量范围内,反符合方法使全谱积分本底降低为原始谱的1/8,提高了对放射性核素的监测灵敏度。使用该系统对气溶胶样品测量7 d,140Ba的最小可探测活度为10 mBq,达到了全面禁止核试验条约对核素实验室核准认证的技术要求。这不仅在CTBT放射性核素核查工作中具有重要意义,在辐射环境监测中也具有重要的应用前景。

     

    Abstract: Radionuclide verification is one of the four monitoring technologies used in International Monitoring System of Comprehensive Nuclear-Test-Ban Treaty (CTBT). The activity of radionuclides concerned by CTBT generally performs at the low-level. An anti-cosmic ray γ spectrometer system with a HPGe detector was developed by using a combination of active and passive shielding techniques in order to improve the detection sensitivity and reduce the affections of background. By adjusting the system with a delay time and testing anti-coincidence count loss correction, compared with the original γ spectrum, the integral background in the energy range of 15-2 700 keV is reduced by a factor of 8. The detection sensitivity is greatly improved by using the anti-coincidence method. For 140Ba, the minimum detectable activity (MDA) is 10 mBq by using the anti-cosmic ray γ spectrometer for 7 d measurement, which meets the technical requirements for certification of nuclide laboratory under the CTBT. It is not only of great significance for CTBT radionuclide verification, but also important for radiation environment monitoring.

     

  • [1] Comprehensive nuclear-test-ban treaty[M]. New York: United Nations, 1996.
    [2] 党海军,刘龙波,武山. 我国禁核试核素核查技术发展与展望[J]. 核化学与放射化学,2019,41(1):133-143.
    DANG Haijun, LIU Longbo, WU Shan, et al. Progress and prospect of radionuclide verification techniques for CTBT in China[J]. Journal of Nuclear and Radiochemistry, 2019,41(1): 133-143(in Chinese).
    [3] SCHULZE J, AUER M, WERZI R. Low level radioactivity measurement in support of the CTBTO[J]. Applied Radiation Isotopes, 2000, 53(1/2): 2330.
    [4] CTBTO. Certification and surveillance assessment of radionuclide laboratories for particulate and noble gas sample analysis[R]. Vienna: PTS, 2019.
    [5] 樊元庆,王世联,李奇,等. 2010年度CTBT放射性核素实验室滤材样品国际比对[J]. 原子能科学技术,2012,46(1):708-712.
    FAN Yuanqing, WANG Shilian, LI Qi, et al. 2010 CTBT intercomparison of atmospheric particle filter samples[J]. Atomic Energy Science and Technology, 2012, 46(1): 708-712(in Chinese).
    [6] 李奇,王世联,樊元庆,等. 2012年度CTBT放射性核素实验室滤材样品能力验证[J]. 核技术,2015,38(3):61-66.
    LI Qi, WANG Shilian, FAN Yuanqing, et al. PTE2012 of atmospheric particle filter samples for CTBT radionuclide laboratories[J]. Nuclear Techniques, 2015, 38(3): 61-66(in Chinese).
    [7] 李君利. 实验室γ能谱测量与分析[M]. 北京:人民交通出版社,2014.
    [8] 李奇,王世联,樊元庆,等. 反宇宙射线γ谱仪系统测量氙同位素活度[J]. 原子能科学技术,2017,51(2):330-337.
    LI Qi, WANG Shilian, FAN Yuanqing, et al. Activity measurement of xenon isotope by anti-cosmic ray γ spectrometer[J]. Atomic Energy Science and Technology, 2017, 51(2): 330-337(in Chinese).
    [9] BURNETT J L, CANTALOUB M G, MAYERM F, et al. Development of a multidimensional gamma-spectrometer[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 312(1): 81-86.
    [10] MILEY H, BRODZINSKI R, REEVES J. Low-background counting systems compared[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 160(2) : 371-385.
    [11] POVINEC P P, COMMANDUCCI J F, LEVY-PALOMO I. IAEAMEL’s underground counting laboratory (CAVE) for the analysis of radionuclides in the environment at very low-levels[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 263(2): 441-445.
    [12] SEMKOW T M, PAREKH P P, SCHWENKER C D, et al. Low-background gamma spectrometry for environmental radioactivity[J]. Applied Radiation and Isotopes, 2002, 57: 213-223.
    [13] LAUREC J, BLANCHARD X, POINTURIER F, et al. A new low background gamma spectrometer equipped with an anti-cosmic device[J]. Nuclear Instruments and Methods in Physics Research A, 1996, 369(2-3): 566-571.
    [14] SEMKOW T M, PAREKH P P, SCHWENKEC D R, et al. Low-background gamma spectrometry for environmental radioactivity[J]. Applied Radiation and Isotopes, 2002, 57: 213-223.
    [15] HURTADO S, GARCALEN M, GARCATENORIO R. Optimized background reduction in low-level gamma-ray spectrometry at a surface laboratory[J]. Applied Radiation and Isotopes, 2006, 64: 1006-1012.
    [16] BYUN J I, CHOI Y H, KWAK S I, et al. An anticoincidence-shielded gamma-ray spectrometer for analysis low level environmental radionuclides[J]. Applied Radiation Isotopes, 2003, 58: 579-583.
    [17] VOJTYLA P, BEER J, TˇAVINA P. Experimental and simulated cosmic muon induced of a Ge spectrometer equipped with a top side proportional chamber[J]. Nuclear Instruments and Methods in Physics Research B,1994, 86: 380-386.
    [18] BEDA A G, DEMIDOVLL E V, STAROSTIN A S. Developement of low background germanimn spectrometer for measurement of neutrino magnetic moment[J]. Nuclear Physics A, 2000, 663&664: 819-824.
    [19] HEUSSER G, WEBER M, HAKENMULLER J, et al. GIOVE, a new detector set up for high sensitivity germanium spectroscopy at shallow depth[J]. The European Physical Journal C, 2015, 75(11): 1-16.
    [20] HU Qingdong, MA Hao, HE Jian, et al. Design of cosmic veto shielding for HPGe-detector spectrometer[J]. Applied Radiation and Isotopes, 2016, 109: 474-478.
    [21] 刁立军,侯铁栋,李玮,等. 用反符合和热中子屏蔽降低γ谱仪本底[J]. 核技术,2010,33(7):501-505.
    DIAO Lijun, HOU Tiedong, LI Wei1, et al. Experimental study on background reduction of γ-ray spectrometer using anticoincidence and thermal neutron shielding methods[J]. Nuclear Techniques, 2010, 33(7): 501-505(in Chinese).
  • 期刊类型引用(1)

    1. Yu-Ning Gu,Wei-Juan Zhao,Xi-Guang Cao,Yu-Xuan Yang,Ting-Kai Ma,Zheng-Li Liao,Fei-Long Xu,Yu-Gang Ma. Feasibility study of the photonuclear reaction cross section of medical radioisotopes using a laser Compton scattering gamma source. Nuclear Science and Techniques. 2024(09): 124-133 . 必应学术

    其他类型引用(1)

计量
  • 文章访问数:  122
  • HTML全文浏览量:  0
  • PDF下载量:  255
  • 被引次数: 2
出版历程
  • 刊出日期:  2023-03-19

目录

    /

    返回文章
    返回