[1] |
余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019,40(4):1-8. YU Hongxing, MA Yugao, ZHANG Zhuohua, et al. Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 2019, 40(4): 1-8(in Chinese).
|
[2] |
GROVER G M, COTTER T P, ERICKSON G F. Structures of very high thermal conductance[J]. Journal of Applied Physics, 1964, 35(6): 1990-1991.
|
[3] |
RANKEN W A, HOUTS M G. Heat pipe cooled reactors for multi-kilowatt space power supplies[R]. US: LANL, 1995.
|
[4] |
HOUTS M G, POSTON D I, RANKEN W A. Heatpipe space power and propulsion systems[C]∥AIP Conference Proceedings. US: American Institute of Physics, 1996: 1155-1162.
|
[5] |
MCCLURE P R, POSTON D I, DIXON D D. Final results of demonstration using flattop fissions (DUFF) experiment[R]. US: LANL, 2012.
|
[6] |
VANDYKE M, MARTIN J. Non-nuclear testing of reactor systems in the early flight fission test facilities (EFF-TF)[C]∥2004 International Congress on Advances in Nuclear Power Plants (ICAPP 2004). [S. l.]: [s. n.], 2004.
|
[7] |
MCCLURE P R, POSTON D I, GIBSON M A, et al. Kilopower project: The KRUSTY fission power experiment and potential missions[J]. Nuclear Technology, 2020, 206: 1-12.
|
[8] |
王傲,申凤阳,胡古,等. 热管空间核反应堆电源的研究进展[J]. 核技术,2020,43(6):9-15. WANG Ao, SHEN Fengyang, HU Gu, et al. A survey of heatpipe space nuclear reactor power supply[J]. Nuclear Techniques, 2020, 43(6): 9-15(in Chinese).
|
[9] |
孙浩,王成龙,刘逍,等. 水下航行器微型核电源堆芯设计[J]. 原子能科学技术,2018,52(4):646-651. SUN Hao, WANG Chenglong, LIU Xiao, et al. Reactor core design of micro nuclear power source applied for underwater vehicle[J]. Atomic Energy Science and Technology, 2018, 52(4): 646-651(in Chinese).
|
[10] |
袁乃驹. 核工程中采用热管的探讨[J]. 核动力工程, 1980,1(3):52-54,44. YUAN Naiju. Discussion on the application of heat pipes in nuclear engineering[J]. Nuclear Power Engineering, 1980, 1(3): 52-54, 44(in Chinese).
|
[11] |
田智星,刘逍,王成龙,等. 高温钾热管稳态运行传热特性研究[J]. 原子能科学技术,2020,54(10):1771-1778. TIAN Zhixing, LIU Xiao, WANG Chenglong, et al. Study on heat transfer performance of high temperature potassium heat pipe at steady state[J]. Atomic Energy Science and Technology, 2020, 54(10): 1771-1778(in Chinese).
|
[12] |
ROSS A M, STOUTE R L. Heat transfer coefficient between UO2 and zircaloy-2[R]. Ontario: Atomic Energy of Canada Limited, 1962.
|
[13] |
KENNARD E H. Kinetic theory of gases[M]. New York: McGraw-hill, 1938.
|
[14] |
HAGRMAN D T, ALLISON C M, BERNA G A. SCDAP/RELAP5/MOD 3.1 code manual: MATPRO, A library of materials properties for Light-Water-Reactor accident analysis. Volume 4[R]. US: NRC, 1995.
|
[15] |
GILBERT E R, BLACKBURN L D. Creep deformation of 20 percent cold worked type 316 stainless steel[J]. J Eng Mater Technol, 1977, 99(2): 168-180.
|
[16] |
LI R, ZHOU Y. High temperature creep properties of UO2 fuel pellets manufactured by low temperature sintering technology[C]∥International Conference on Nuclear Engineering. US: American Society of Mechanical Engineers, 2013: V001T02A002.
|
[17] |
GARNER F A, TOLOCZKO M B, MUNRO B, et al. Comparison of irradiation creep and swelling of an austenitic alloy irradiated in FFTF and PFR[C]∥Effects of Radiation on Materials: 18th International Symposium. US: ASTM International, 1999.
|
[18] |
YVON P, CARR F. Structural materials challenges for advanced reactor systems[J]. Journal of Nuclear Materials, 2009, 385(2): 217-222.
|
[19] |
GAFFARD V, BESSON J, GOURGUES-LORENZON A F. Creep failure model of a tempered martensitic stainless steel integrating multiple deformation and damage mechanisms[J]. International Journal of Fracture, 2005, 133(2): 139-166.
|
[20] |
LUCUTA P G, HASTINGS I J. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: Review and recommendations[J]. Journal of Nuclear Materials, 1996, 232(2-3): 166-180.
|
[21] |
FINK J K. Thermophysical properties of uranium dioxide[J]. Journal of Nuclear Materials, 2000, 279(1): 1-18.
|
[22] |
BALBOA H, VAN BRUTZEL L, CHARTIER A, et al. Assessment of empirical potential for MOX nuclear fuels and thermomechanical properties[J]. Journal of Nuclear Materials, 2017, 495: 67-77.
|
[23] |
MONTGOMERY R, TOM C, LIU W, et al. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis[J]. Journal of Computational Physics, 2017, 328: 278-300.
|
[24] |
MIHAILA B, STAN M, RAMIREZ J, et al. Simulations of coupled heat transport, oxygen diffusion, and thermal expansion in UO2 nuclear fuel elements[J]. Journal of Nuclear Materials, 2009, 394(2-3): 182-189.
|
[25] |
van UFFELEN P, PASTORE G. Oxide fuel performance modeling and simulation[C]∥ KONINGS R. Comprehensive nuclear materials (Second Edition). Oak Ridge, TN: Elsevier, 2020: 363-416.
|
[26] |
MILES K J. The SAS4A/SASSYS-1 safety analysis code system chapter 8: DEFORM-4: Steady-state and transient pre-failure pin behavior[R]. US: Argonne National Laboratory, 2017.
|
[27] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
|