环形燃料元件内冷却剂流动换热特性的数值研究

周云龙, 吴明婷, 黄娜, 李洪伟

周云龙, 吴明婷, 黄娜, 李洪伟. 环形燃料元件内冷却剂流动换热特性的数值研究[J]. 原子能科学技术, 2023, 57(6): 1170-1181. DOI: 10.7538/yzk.2022.youxian.0703
引用本文: 周云龙, 吴明婷, 黄娜, 李洪伟. 环形燃料元件内冷却剂流动换热特性的数值研究[J]. 原子能科学技术, 2023, 57(6): 1170-1181. DOI: 10.7538/yzk.2022.youxian.0703
ZHOU Yunlong, WU Mingting, HUANG Na, LI Hongwei. Numerical Study on Coolant Flow and Heat Transfer Characteristics in Annular Fuel[J]. Atomic Energy Science and Technology, 2023, 57(6): 1170-1181. DOI: 10.7538/yzk.2022.youxian.0703
Citation: ZHOU Yunlong, WU Mingting, HUANG Na, LI Hongwei. Numerical Study on Coolant Flow and Heat Transfer Characteristics in Annular Fuel[J]. Atomic Energy Science and Technology, 2023, 57(6): 1170-1181. DOI: 10.7538/yzk.2022.youxian.0703

环形燃料元件内冷却剂流动换热特性的数值研究

Numerical Study on Coolant Flow and Heat Transfer Characteristics in Annular Fuel

  • 摘要: 相较于传统棒束燃料元件,内外双冷却通道的环形燃料元件具有堆芯功率密度高同时燃料温度低的优点,研究其热工水力特性具有重要意义。本文采用计算流体动力学(CFD)方法对内外冷却的环形燃料元件内外冷却流道的流动沸腾进行数值模拟,根据模拟结果对内外冷却流道的温度场、二次流速度及换热系数等参数进行分析。结果表明:最大二次流速度出现在燃料棒近壁面处;环形燃料元件外流道温度场分布呈现间隙处温度高,各子通道温度低的分布趋势;固体燃料棒表面温度在轴向同一位置处,沿周向以90°为周期变化;换热系数呈现规律性波动,单棒的不同周向角度换热系数存在较大差异,沿周向以90°为周期变化,周向角度为45°、135°、225°和315°位置处均出现温度极大值。本文结果可为环形燃料元件工程应用提供理论参考。

     

    Abstract: Annular fuel element is a new type of fuel element proposed by Massachusetts Institute of Technology. The fuel element structure adopts double channel cooling structure with internal and external cooling simultaneously. Compared with the traditional rod-bundle fuel element, the annular fuel element with both inner and outer cooling channels has the advantages of high core power density and low fuel temperature, so it is of great significance to study its thermal-hydraulics characteristics. Computational fluid dynamics (CFD) method was used to analyze the flow boiling in the inner and outer cooling channels of annular fuel elements. A 2×2 annular fuel element model was established, and its flow and boiling heat transfer characteristics were studied based on Lee phase transition model and SST k-w turbulence model. The surface temperature of fuel rod, coolant temperature field in flow channel and gas volume fraction distribution were analyzed. The flow characteristics of the coolant were evaluated by calculating the secondary flow velocity distribution. The boiling heat transfer characteristics of the coolant were analyzed by calculating its heat transfer coefficient. The results show that the maximum secondary velocity region appears near the wall of the fuel rod, and the maximum secondary velocity increases with the increase of coolant temperature, but the average secondary velocity decreases with the increase of temperature. The temperature distribution of the annular fuel element outflow channel shows a trend of high temperature at the gap and low temperature at each sub-channel. Increasing the inlet temperature reduces the heat dissipated by the fuel rods through the inner passage and increases the heat dissipated through the outer passage. Increasing the heat flux will result in high temperature zones between adjacent fuel rods. At the same position in the axial direction, the surface temperature of solid fuel rod changes with a cycle of 90° along the circumferential direction, and the maximum temperature occurs at positions with circumferential angles of 45°, 135°, 225° and 315°. The average heat transfer coefficients at 0°, 90° and 180° positions are 22.53%, 52.16% and 7.9% higher than those at 270° positions, respectively. The heat transfer effect at 90° is the best. The overall heat transfer coefficient of the fuel element decreases sharply at the inlet due to the inlet effect. The coolant then boils in the channel to produce a large number of bubbles. Due to the randomness of bubble generation and movement, strong disturbance is formed to the surrounding flow, which makes the heat transfer effect increase and shows regular fluctuation.

     

  • [1] 季松涛,韩智杰,何晓军,等. 压水堆环形燃料组件研发进展[J]. 原子能科学技术,2020,54(增刊):240-245.
    JI Songtao, HAN Zhijie, HE Xiaojun, et al. Progress of research and development on annular fuel assembly for PWR application[J]. Atomic Energy Science and Technology, 2020, 54(Suppl.): 240-245(in Chinese).
    [2] KAZIMI M S. High performance fuel design for next generations PWRs: Final report, MIT-NFC-PR-082[R]. US: Massachusetts Institute of Technology, 2006.
    [3] HEJZLAR P, KAZIMI M S. Annular fuel for high power density pressurized water reactors: Motivation and overview[J]. Nuclear Technology, 2007, 160(1): 2-15.
    [4] BLINKOV V N, BOLTENKO E A, ELKIN I V, et al. Prospects for using annular fuel elements in nuclear power engineering[J]. Thermal Engineering, 2010, 57(3): 213-218.
    [5] 冯海宁,赵瑞瑞,王虹,等. 压水堆环形燃料组件研发综述[J]. 中国核电,2020,13(6):759-764.
    FENG Haining, ZHAO Ruirui, WANG Hong, et al. Overview of annular fuel applied in PWR nuclear power plant research progress[J]. China Nuclear Power, 2020, 13(6): 759-764(in Chinese).
    [6] SONG K W, KIM K S, PARK J Y, et al. Feasibility evaluation report of dual-cooled annular fuel[R]. Korea: Korea Atomic Energy Research Institute, 2009.
    [7] SHIN C H, CHUN T H, OH D S, et al. Thermal hydraulic performance assessment of dual-cooled annular nuclear fuel for OPR-1000[J]. Nuclear Engineering and Design, 2012, 243: 291-300.
    [8] LEE C Y, SHIN C H, PARK J Y, et al. An experimental investigation on turbulent flow mixing in a simulated 3×3 dual-cooled annular fuel bundle using particle image velocimetry[J]. Nuclear Engineering and Design, 2013, 260: 134-144.
    [9] EBRAHIMIAN M, ANSARIFAR G R. Investigation of the nano fluid effects on heat transfer characteristics in nuclear reactors with dual cooled annular fuel using CFD (computational fluid dynamics) modeling[J]. Energy, 2016, 98: 1-14.
    [10] ZAIDABADI M, ANSARIFAR G R, ESTEKI M H. Thermal hydraulic analysis of VVER-1000 nuclear reactor with dual-cooled annular fuel using k-ω SST Turbulence model[J]. Annals of Nuclear Energy, 2017, 101: 118-127.
    [11] ANSARIFAR G R, ESTEKI M H, ZAIDABADI M. Investigation of the dual-cooled annular fuel effect on the thermal power uprate in a VVER-1000 nuclear reactor[J]. Nuclear Technology, 2016, 195(1): 105-109.
    [12] DOMINGUEZ A N, RAO Y F, BEUTHE T. Advances of the AC-DC code, a coupled computational tool to perform thermalhydraulic modeling of fuel bundles with annular fuel elements[J]. Nuclear Engineering and Design, 2020, 356: 110360.
    [13] YANG J, YUAN L. Pressure drop experiment with externally and internally cooled annular fuel bundles[J]. Nuclear Engineering and Design, 2021, 385: 111528.
    [14] KIANPOUR R, ANSARIFAR G R, FATHI M. Optimal design of a VVER-1000 nuclear reactor core with dual cooled annular fuel based on the reactivity temperature coefficients using thermal hydraulic and neutronic analysis by implementing the genetic algorithms[J]. Annals of Nuclear Energy, 2020, 148: 107682.
    [15] KIANPOUR R, ANSARIFAR G R. Optimization of the TiO2 nanofluid as a coolant in the VVER-1000 nuclear reactor based on the thermal reactivity feedback coefficients via the genetic algorithm[J]. Kerntechnik, 2021, 86(6): 419-436.
    [16] NASIRI S, ANSARIFAR G R, ESREKI M H. Design of the CAREM nuclear reactor core with dual cooled annular fuel and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters[J]. Annals of Nuclear Energy, 2022, 169: 108939.
    [17] CHANDRASEKARAN S, GARIMELLA S. A whole-core steady-state thermal-hydraulic model for annular fuel type fluoride-salt-cooled reactors[J]. Nuclear Engineering and Design, 2022, 388: 111641.
    [18] DENG Y, WU Y, ZHANG D, et al. Development of a thermal-mechanical behavior coupling analysis code for a dual-cooled annular fuel element in PWRs[J]. Nuclear Engineering and Design, 2016, 301: 353-365.
    [19] DENG Y, WU Y, LI Y, et al. Mechanism study and theoretical simulation on heat split phenomenon in dual-cooled annular fuel element[J]. Annals of Nuclear Energy, 2016, 94: 44-54.
    [20] 胡立强,季松涛,杨立新,等. 流量分配比对环形燃料芯块传热特性影响数值模拟研究[J]. 原子能科学技术,2021,55(4):647-653.
    HU Liqiang, JI Songtao, YANG Lixin, et al. CFD evaluation of heat transfer characteristic with change of flow distribution ratio for annular fuel pellet[J]. Atomic Energy Science and Technology, 2021, 55(4): 647-653(in Chinese).
    [21] 胡立强,季松涛,杨立新,等. 环形燃料流量分配比范围研究[J]. 原子能科学技术,2021,55(3):385-390.
    HU Liqiang, JI Songtao, YANG Lixin, et al. Study on flow distribution ratio range of annular fuel[J]. Atomic Energy Science and Technology, 2021, 55(3): 385-390(in Chinese).
    [22] 胡立强,田子豪,季松涛,等. 环形燃料混合堆芯横向流动特性数值模拟研究[J]. 原子能科学技术,2023,57(1):104-110.
    HU Liqiang, TIAN Zihao, JI Songtao, et al. Numerical simulation of cross flow characteristic for annular fuel mixed core[J]. Atomic Energy Science and Technology, 2023, 57(1): 104-110(in Chinese).
    [23] 何晓军,杨世豪,胡立强,等. 基于环形燃料的低温供热堆热工水力特性数值模拟研究[J]. 原子能科学技术,2022,56(增刊):1-9.
    HE Xiaojun, YANG Shihao, HU Liqiang, et al. Numerical simulation of thermal hydraulic characteristics of low temperature heating reactor based on annular fuel[J]. Atomic Energy Science and Technology, 2022, 56(Suppl.): 1-9(in Chinese).
    [24] LIU K, WANG M, GAN F, et al. Numerical investigation of flow and heat transfer characteristics in platetype fuel channels of IAEA MTR based on OpenFOAM[J]. Progress in Nuclear Energy, 2021, 141: 103963.
    [25] WANG M, WANG Y, TIAN W, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836.
    [26] KHAN I, WANG M, ZHANG Y, et al. Twophase bubbly flow simulation using CFD method: A review of models for interfacial forces[J]. Progress in Nuclear Energy, 2020, 125: 103360.
    [27] WANG M, LI L, LIU K, et al. Development of subcooled wall boiling model considering bubble sliding in narrow rectangular channel[J]. International Journal of Thermal Sciences, 2022, 181: 107787.
    [28] HEJZLAR P, KAZIMI M S. Annular fuel for high power density pressurized water reactors: Motivation and overview[J]. Nuclear Technology, 2007, 160(1): 2-15.
    [29] 邓阳斌,巫英伟,张伟旭,等. 双面冷却环形燃料元件的几何尺寸优化[J]. 原子能科学技术,2015,49(7):1208-1214.
    DENG Yangbin, WU Yingwei, ZHANG Weixu, et al. Geometric size optimization of dual-cooled annular fuel element[J]. Atomic Energy Science and Technology, 2015, 49(7): 1208-1214(in Chinese).
    [30] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
    [31] LEE H W. A pressure iteration scheme for two-phase flow modeling[M]. Washington: Hemisphere Publishing, 1980: 125-128.
    [32] 陈奇飞,刘士杰,陈树伟,等. 气固两相流对燃气-蒸汽弹射动力系统弯管结构影响的流热固耦合数值研究[J]. 航空动力学报,2022,37(11):2668-2679.
    CHEN Qifei, LIU Shijie, CHEN Shuwei, et al. Fluid-heat-solid coupling numerical study on influence of gas-solid two-phase flow on elbow tube of gas-steam ejection power system[J]. Journal of Aerospace Power, 2022, 37(11): 2668-2679(in Chinese).
    [33] ZARIFI E, JAHANFARNIA G, VEYSI F. Thermal-hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach[J]. Annals of Nuclear Energy, 2013, 51: 203-212.
    [34] BARTOLOMEI G G, BRANTOV V G, MOLOCHNI-KOV Y S, et al. An experimental investigation of true volumetric vapor content with subcooled boiling in tubes[J]. Thermal Engineering, 1982, 29(3): 132-135.
计量
  • 文章访问数:  111
  • HTML全文浏览量:  0
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 刊出日期:  2023-06-19

目录

    /

    返回文章
    返回