[1] |
NADIA B, ALA A, GÖRAN P, et al. 129I from the nuclear reprocessing facilities traced in precipitation and runoff in northern Europe[J]. Environmental Science & Technology, 2001, 35(8): 1579-1586.
|
[2] |
KAZAKOV V S, DEMIDCHIK E P, ASTAKHOVA L N, et al. Thyroid cancer after Chernobyl[J]. Nature, 1992, 359: 21-22.
|
[3] |
CHEN Guangyuan, ZHAO Qian, WANG Zeru, et al. Pitch-based porous polymer beads for highly efficient iodine capture[J]. Journal of Hazardous Materials, 2022, 434(15): 128859.
|
[4] |
MUHIRE C, REDA A T, ZHANG D X, et al. An overview on metal oxide-based materials for iodine capture and storage[J]. Chemical Engineering Journal, 2022, 431(3): 133816.
|
[5] |
CHEE T S, TIAN Z J, ZHANG X W, et al. Efficient capture of radioactive iodine by a new bismuth-decorated electrospinning carbon nanofiber[J]. Journal of Nuclear Materials, 2020, 542(15): 152526.
|
[6] |
LI Baiyan, DONG Xinglong, WANG Hao, et al. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps[J]. Nature Communication, 2017, 8: 485.
|
[7] |
贾继真,张慧荣,潘子鹏,等. 煤基活性炭比表面积与碘吸附值相关性研究[J]. 洁净煤技术,2018,24(3):57-62. JIA Jizhen, ZHANG Huirong, PAN Zipeng, et al. Research on the correlation between specific surface area and iodine adsorption value of coalbased activated carbon[J]. Clean Coal Technology, 2018, 24(3): 57-62(in Chinese).
|
[8] |
黄毓英,吴彦伟,郭亮天,等. 煤基活性炭去除放射性碘的性能研究[J]. 原子能科学技术,1988,22(6):650-656. HUANG Yuying, WU Yanwei, GUO Liangtian, et al. Performance study of coal-base charcoals for removing radioiodine[J]. Atomic Energy Science and Technology, 1988, 22(6): 650-656(in Chinese).
|
[9] |
SUN Hanxue, LA Peiqing, ZHU Zhaoqi, et al. Capture and reversible storage of volatile iodine by porous carbon with high capacity[J]. Journal of Materials Science, 2015, 50: 7236-7332.
|
[10] |
COLLINS D A, TAYLOR L R, TAYLOR R. Development of impregnated charcoals for trapping methyl iodide at high humidity[C]∥The Proceedings of the 9th AEC Air Cleaning Conference. Boston: United Kingdom Atomic Energy Authority, 1966.
|
[11] |
KEON H O, MOON Seunghyun, LEE H C, et al. Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)metal impregnated activated carbons under humid conditions[J]. Journal of Hazardous Materials, 2019, 368(15): 550-559.
|
[12] |
CHEBBI M, MONSANGLANT-LOUVET C, PARENT P, et al. Sorption properties of activated carbons for the capture of methyl iodide in the context of nuclear industry[J]. Carbon Trends, 2022, 7(4): 100164.
|
[13] |
AMPELOGOVA N I, KRITSKII V G, KRUPENNIKOVA N I, et al. Carbon-fiber adsorbent materials for removing radioactive iodine from gases[J]. Atomic Energy, 2002, 92(4): 336-340.
|
[14] |
OBRUCHIKOV A V, MERKUSHKIN A O, MAGOMEDBEKOV E P, et al. Radioiodine removal from air streams with impregnated UVIS carbon fiber[J]. Nuclear Engineering and Technology, 2021, 53(5): 1717-1722.
|
[15] |
孔海霞,杜建兴,丘丹圭,等. 用非剧毒试剂制备气态放射性甲基碘在碘吸附器检验中的初步应用[J]. 辐射防护,2012,32(4):222-227. KONG Haixia, DU Jianxing, QIU Dangui, et al. Study on methyl iodide prepared without acute toxicant and its trial application in iodine adsorber test[J]. Radiation Protection, 2012, 32(4): 222-227(in Chinese).
|
[16] |
ASTM-D3803-91Standard test method for nuclear-grade activated carbon[S]. USA: ASTM, 2014.
|
[17] |
HJ1188-202核医学辐射防护与安全要求[S]. 北京:生态环境部,2021.
|
[18] |
PARK S, PARK H, LEE W, et al. Effect of water vapor on adsorption of methyl iodide to triethylenediamine-impregnated activated carbons[J]. Separations Technology, 1995. doi: 10.1016/0956-9618(94)00104-Z.
|
[19] |
PARK S, LEE W, MOON H. Adsorption and desorption of gaseous methyl iodide in a triethylenediamine-impregnated activated carbon bed[J]. Separations Technology, 1993, 3(3): 133-142.
|
[20] |
GONZÁLEZ-GARCÍA C M, GONZÁLEZ J F, ROMÁN S. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons[J]. Fuel Processing Technology, 2011, 92: 247-252.
|