三乙烯二胺改性活性炭纤维对气态甲基碘吸附研究

王烈林, 刘峰, 詹杰, 苏兴东, 陈小江, 李利, 周美灵, 邹浩, 丁聪聪, 谢华

王烈林, 刘峰, 詹杰, 苏兴东, 陈小江, 李利, 周美灵, 邹浩, 丁聪聪, 谢华. 三乙烯二胺改性活性炭纤维对气态甲基碘吸附研究[J]. 原子能科学技术, 2023, 57(9): 1800-1809. DOI: 10.7538/yzk.2022.youxian.0869
引用本文: 王烈林, 刘峰, 詹杰, 苏兴东, 陈小江, 李利, 周美灵, 邹浩, 丁聪聪, 谢华. 三乙烯二胺改性活性炭纤维对气态甲基碘吸附研究[J]. 原子能科学技术, 2023, 57(9): 1800-1809. DOI: 10.7538/yzk.2022.youxian.0869
WANG Lielin, LIU Feng, ZHAN Jie, SU Xingdong, CHEN Xiaojiang, LI Li, ZHOU Meiling, ZOU Hao, DING Congcong, XIE Hua. Adsorptive Removal of Gaseous Methyl Iodide by Triethylenediamine Modified Activated Carbon Fiber[J]. Atomic Energy Science and Technology, 2023, 57(9): 1800-1809. DOI: 10.7538/yzk.2022.youxian.0869
Citation: WANG Lielin, LIU Feng, ZHAN Jie, SU Xingdong, CHEN Xiaojiang, LI Li, ZHOU Meiling, ZOU Hao, DING Congcong, XIE Hua. Adsorptive Removal of Gaseous Methyl Iodide by Triethylenediamine Modified Activated Carbon Fiber[J]. Atomic Energy Science and Technology, 2023, 57(9): 1800-1809. DOI: 10.7538/yzk.2022.youxian.0869

三乙烯二胺改性活性炭纤维对气态甲基碘吸附研究

Adsorptive Removal of Gaseous Methyl Iodide by Triethylenediamine Modified Activated Carbon Fiber

  • 摘要: 气态甲基碘是核设施运行过程中难以处理的放射性气态产物之一。本文通过水热法制备了三乙烯二胺(TEDA)改性高比表面积粘胶基活性炭纤维材料,并开展了改性材料气态甲基碘吸附研究,通过BET、SEM-EDS、FT-IR、TGA、放射性测试方法对材料进行了表征和吸附性能分析。静态气态碘吸附结果表明,水热改性材料对单质碘吸附量提高了36%,达到1.84 g/g,甲基碘吸附量达到400 mg/g。甲基碘动态吸附实验表明,改性材料具有较高的吸附效率;随着温度和湿度的增加,吸附效率略有降低;环境湿度对气态甲基碘的吸附性能影响较大。温度30 ℃、相对湿度95%条件下的穿透测试表明,材料在12 h内未出现穿透,改性材料展现出优异的甲基碘吸附性能。放射性甲基碘吸附实验显示,水热改性材料吸附效率接近95%,超过未改性材料的3倍;TEDA改性活性炭纤维明显提高了对气态甲基碘的化学吸附能力。水热法TEDA改性粘胶基活性炭纤维材料表现出优异气态甲基碘吸附性能。

     

    Abstract: The rapid growth of the nuclear industry poses a great challenge for radioactive waste treatment. Volatile radioactive isotopes generated from uranium fission, especially gaseous iodine, attracted great attention due to their environment and health hazards. The widespread species of radioactive iodine are gaseous elemental iodine (I2) and methyl iodide (CH3I). It is difficult to trap the methyl iodide in high humid condition. Activated carbon and derivative materials are widely used as adsorbents to remove volatile iodine. Triethylenediamine (TEDA) is proposed as impregnation via isotope exchange mechanism. In this study, activated carbon fiber (ACF) with high surface area, heat resistant and chemically stable was used as substrate, TEDA-modified viscose-based activated carbon fiber was prepared by hydrothermal reaction. For fiber hydrothermal modified with 5% (mass fraction) TEDA, the surface area and pore volume decrease about 20%. Compared with conventional impregnation, more TEDA impregnation enters into the microporous structure of activated carbon fibers under hydrothermal environment. The gaseous iodine adsorption properties of modified activated carbon fiber were investigated. Static adsorption experiments of elemental iodine and methyl iodide were performed. The adsorption capacity of elemental iodine and methyl iodide increases by 36% and 50% respectively. Methyl iodide adsorption capacity of hydrothermal modified-ACF is 400 mg/g. The dynamic adsorption experiments show that the adsorption performance of modified activated carbon fiber for methyl iodine decreases with the increase of temperature and humidity. The adsorption performance of activated carbon fiber for methyl iodine is greatly affected by environmental humidity. Breakthrough experiment with 5 ppm of gaseous methyl iodide was conducted under high humid conditions (30 ℃, RH 95%), the feed gas flow rate was fixed at 15 L/min for 12 h. Breakthrough curve indicates that hydrothermal modified-ACF has good adsorption performance with respect to methyl iodide. The radioactive CH3131I adsorption experiments under severe conditions were carried out. The removal efficiency of hydrothermal modified-ACF increases from 29.11% to 94.85%. The affinity of methyl iodide is improved by TEDA-modified. The hydrothermal modified-ACF exhibits the high adsorption efficiency of gaseous iodine.

     

  • [1] NADIA B, ALA A, GÖRAN P, et al. 129I from the nuclear reprocessing facilities traced in precipitation and runoff in northern Europe[J]. Environmental Science & Technology, 2001, 35(8): 1579-1586.
    [2] KAZAKOV V S, DEMIDCHIK E P, ASTAKHOVA L N, et al. Thyroid cancer after Chernobyl[J]. Nature, 1992, 359: 21-22.
    [3] CHEN Guangyuan, ZHAO Qian, WANG Zeru, et al. Pitch-based porous polymer beads for highly efficient iodine capture[J]. Journal of Hazardous Materials, 2022, 434(15): 128859.
    [4] MUHIRE C, REDA A T, ZHANG D X, et al. An overview on metal oxide-based materials for iodine capture and storage[J]. Chemical Engineering Journal, 2022, 431(3): 133816.
    [5] CHEE T S, TIAN Z J, ZHANG X W, et al. Efficient capture of radioactive iodine by a new bismuth-decorated electrospinning carbon nanofiber[J]. Journal of Nuclear Materials, 2020, 542(15): 152526.
    [6] LI Baiyan, DONG Xinglong, WANG Hao, et al. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps[J]. Nature Communication, 2017, 8: 485.
    [7] 贾继真,张慧荣,潘子鹏,等. 煤基活性炭比表面积与碘吸附值相关性研究[J]. 洁净煤技术,2018,24(3):57-62.
    JIA Jizhen, ZHANG Huirong, PAN Zipeng, et al. Research on the correlation between specific surface area and iodine adsorption value of coalbased activated carbon[J]. Clean Coal Technology, 2018, 24(3): 57-62(in Chinese).
    [8] 黄毓英,吴彦伟,郭亮天,等. 煤基活性炭去除放射性碘的性能研究[J]. 原子能科学技术,1988,22(6):650-656.
    HUANG Yuying, WU Yanwei, GUO Liangtian, et al. Performance study of coal-base charcoals for removing radioiodine[J]. Atomic Energy Science and Technology, 1988, 22(6): 650-656(in Chinese).
    [9] SUN Hanxue, LA Peiqing, ZHU Zhaoqi, et al. Capture and reversible storage of volatile iodine by porous carbon with high capacity[J]. Journal of Materials Science, 2015, 50: 7236-7332.
    [10] COLLINS D A, TAYLOR L R, TAYLOR R. Development of impregnated charcoals for trapping methyl iodide at high humidity[C]∥The Proceedings of the 9th AEC Air Cleaning Conference. Boston: United Kingdom Atomic Energy Authority, 1966.
    [11] KEON H O, MOON Seunghyun, LEE H C, et al. Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)metal impregnated activated carbons under humid conditions[J]. Journal of Hazardous Materials, 2019, 368(15): 550-559.
    [12] CHEBBI M, MONSANGLANT-LOUVET C, PARENT P, et al. Sorption properties of activated carbons for the capture of methyl iodide in the context of nuclear industry[J]. Carbon Trends, 2022, 7(4): 100164.
    [13] AMPELOGOVA N I, KRITSKII V G, KRUPENNIKOVA N I, et al. Carbon-fiber adsorbent materials for removing radioactive iodine from gases[J]. Atomic Energy, 2002, 92(4): 336-340.
    [14] OBRUCHIKOV A V, MERKUSHKIN A O, MAGOMEDBEKOV E P, et al. Radioiodine removal from air streams with impregnated UVIS carbon fiber[J]. Nuclear Engineering and Technology, 2021, 53(5): 1717-1722.
    [15] 孔海霞,杜建兴,丘丹圭,等. 用非剧毒试剂制备气态放射性甲基碘在碘吸附器检验中的初步应用[J]. 辐射防护,2012,32(4):222-227.
    KONG Haixia, DU Jianxing, QIU Dangui, et al. Study on methyl iodide prepared without acute toxicant and its trial application in iodine adsorber test[J]. Radiation Protection, 2012, 32(4): 222-227(in Chinese).
    [16] ASTM-D3803-91Standard test method for nuclear-grade activated carbon[S]. USA: ASTM, 2014.
    [17] HJ1188-202核医学辐射防护与安全要求[S]. 北京:生态环境部,2021.
    [18] PARK S, PARK H, LEE W, et al. Effect of water vapor on adsorption of methyl iodide to triethylenediamine-impregnated activated carbons[J]. Separations Technology, 1995. doi: 10.1016/0956-9618(94)00104-Z.
    [19] PARK S, LEE W, MOON H. Adsorption and desorption of gaseous methyl iodide in a triethylenediamine-impregnated activated carbon bed[J]. Separations Technology, 1993, 3(3): 133-142.
    [20] GONZÁLEZ-GARCÍA C M, GONZÁLEZ J F, ROMÁN S. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons[J]. Fuel Processing Technology, 2011, 92: 247-252.
  • 期刊类型引用(1)

    1. 龙成梅. 改性活性炭材料制备及其在净化VOC中的影响因素研究. 化纤与纺织技术. 2024(07): 22-24 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  125
  • HTML全文浏览量:  2
  • PDF下载量:  159
  • 被引次数: 2
出版历程
  • 刊出日期:  2023-09-19

目录

    /

    返回文章
    返回