CO2-SF6混合工质布雷顿循环特性初步分析

Analysis of Brayton Cycle Characteristics of CO2-SF6 Mixed Working Fluid

  • 摘要: 超临界二氧化碳(S-CO2)布雷顿循环是近年来备受学界与工业界关注的高效能量转换系统,具有系统简单紧凑、噪声小、效率高等优点。然而,目前的S-CO2布雷顿循环研究通常考虑的是环境温度为20 ℃的应用场景,循环最低温度通常为32 ℃,而未对深海、极地等低温冷源场景做适应性的分析优化。CO2-SF6混合工质有着较纯CO2工质更低的临界参数,有望在低温冷源场景下进一步降低压缩功、提升透平压比,进而提高循环效率。本文选取PR方程与范德瓦尔斯混合规则,使用Nishiumi相互作用系数模型计算了相互作用系数,以及CO2-SF6混合物的热物性,计算值与实验结果吻合良好。基于混合工质物性计算模型,对最高压力12 MPa、循环最低温度15~55 ℃、最低压力略高于临界压力的简单回热循环进行了分析。结果表明,用CO2-SF6混合工质代替纯CO2工质可有效提升透平压比,进而提升循环效率,同时降低临界温度及最优压缩机入口温度。并且使用CO2-SF6混合工质可有效改善压缩机入口温度低于拟临界温度时循环效率下降的问题,提高循环在低温冷源下的稳定性。初步分析结果显示,使用CO2-SF6混合工质替代纯CO2工质可有效提升循环在低温冷源环境下的表现,这也表明混合工质方案是拓展S-CO2布雷顿循环适用温度范围的有效解决方案之一。

     

    Abstract: The supercritical carbon dioxide (S-CO2) Brayton cycle is an efficient energy conversion system. It has the advantages of simple and compact, low noise and high efficiency. Therefore, it has attracted much attention from academia and industry in recent years. However, the current S-CO2 Brayton cycle study usually considers the application scenarios with ambient temperature 20 ℃, and the minimum cyclic temperature is 32 ℃. The adaptive analysis and optimization of low temperature cold source scenarios such as deep sea and polar regions are not optimized. CO2-SF6 mixture has lower critical parameters than pure CO2, so that it is expected to further reduce the compression power, improve the turbine pressure ratio, and thus improve the cycle efficiency with low ambient temperature. In this paper, the PR equation and van der Waals mixing rules were used to calculate the CO2-SF6 mixture thermal properties with the Nishiumi interaction coefficient model. The thermal properties calculated are in good agreement with the experiment data in literature. Based on the calculated thermal properties, a simple recuperation cycle was analyzed with a maximum pressure of 12 MPa, a minimum cyclic temperature of 15-55 ℃, and a minimum pressure slightly higher than the critical pressure. The results show that replacing the pure CO2 with a CO2-SF6 mixture can effectively improve the turbine pressure ratio, thereby improving the cycle efficiency, and reducing the critical temperature and the optimal compressor inlet temperature. And the use of CO2-SF6 mixture can effectively decrease cycle efficiency degradation when the compressor inlet temperature is lower than the quasicritical temperature, thereby improving the stability of the cycle under the low temperature cold source. The preliminary analysis results show that the use of CO2-SF6 mixed working fluid instead of pure CO2 working fluid can effectively improve the performance of the cycle in the low temperature environment, which also indicates that the mixed working fluid scheme is one of the effective solutions to expand the applicable temperature range of the S-CO2 Brayton cycle.

     

/

返回文章
返回