Al含量对含铝奥氏体不锈钢在高温超临界二氧化碳中均匀腐蚀性能的影响研究

刘珠, 龙家琛, 高阳, 郭相龙, 张乐福

刘珠, 龙家琛, 高阳, 郭相龙, 张乐福. Al含量对含铝奥氏体不锈钢在高温超临界二氧化碳中均匀腐蚀性能的影响研究[J]. 原子能科学技术, 2024, 58(2): 401-410. DOI: 10.7538/yzk.2023.youxian.0290
引用本文: 刘珠, 龙家琛, 高阳, 郭相龙, 张乐福. Al含量对含铝奥氏体不锈钢在高温超临界二氧化碳中均匀腐蚀性能的影响研究[J]. 原子能科学技术, 2024, 58(2): 401-410. DOI: 10.7538/yzk.2023.youxian.0290
LIU Zhu, LONG Jiachen, GAO Yang, GUO Xianglong, ZHANG Lefu. Effect of Al Content on General Corrosion Behavior of Alumina-forming Austenitic Stainless Steel in High Temperature Supercritical Carbon Dioxide[J]. Atomic Energy Science and Technology, 2024, 58(2): 401-410. DOI: 10.7538/yzk.2023.youxian.0290
Citation: LIU Zhu, LONG Jiachen, GAO Yang, GUO Xianglong, ZHANG Lefu. Effect of Al Content on General Corrosion Behavior of Alumina-forming Austenitic Stainless Steel in High Temperature Supercritical Carbon Dioxide[J]. Atomic Energy Science and Technology, 2024, 58(2): 401-410. DOI: 10.7538/yzk.2023.youxian.0290

Al含量对含铝奥氏体不锈钢在高温超临界二氧化碳中均匀腐蚀性能的影响研究

基金项目: 

中核集团领创科研项目

中核集团"青年英才"项目

详细信息
  • 中图分类号: TL341;TG172

Effect of Al Content on General Corrosion Behavior of Alumina-forming Austenitic Stainless Steel in High Temperature Supercritical Carbon Dioxide

  • 摘要: 为进一步提升奥氏体不锈钢作为超临界二氧化碳核反应堆候选包壳材料的耐腐蚀性能,对比研究了3种不同Al含量的含铝奥氏体不锈钢及不含Al基材在650 ℃/20 MPa的超临界二氧化碳环境中的均匀腐蚀行为。结果表明,材料的腐蚀增重随Al含量增加而降低,不同Al含量材料的腐蚀增重均近似服从抛物线生长规律。Al含量低于1.5wt%时,材料表面生成双层富Fe氧化膜,保护性差,渗碳层厚度可达约12 μm;Al含量高于2.5wt%时,材料表面生成保护性氧化膜,外层富Cr、内层富Al,氧化膜及基体中仍存在渗碳行为,渗碳层厚度减小至约6 μm。造成差异的原因是较高Al含量能有效促进保护性富Al氧化膜的形成,抑制Fe的向外扩散和C的向内扩散,进而提升材料的耐氧化和渗碳属性。

     

    Abstract: Supercritical carbon dioxide is one of the most promising candidate working fluids for nuclear power plants. Structural materials using in this kind of system face severe challenges due to its high temperature and high pressure. Corrosion, especially oxidation and carburization, will occur, which leads to the failure of material. Traditional metallic materials like austenitic stainless steel, which is regarded as the candidate cladding materials, will break away because of their limited properties. To further improve the corrosion resistance of austenitic stainless steel as the candidate cladding material for supercritical carbon dioxide nuclear reactor, the general corrosion behavior of three kinds of alumina-forming austenitic stainless steel with different Al contents and their Al-free steel was investigated in supercritical carbon dioxide at 650 ℃/20 MPa. The purity of carbon dioxide was 99.99%. All samples were firstly ground, and then polished to eliminate the surface damage regions. Scanning electron microscopy equipped with backscattered electron, electron backscatter diffraction detector and energy dispersive spectroscopy was used for microanalysis. Focused ion beam system was used to prepare the cross-sectional transmission electron microscopy foils. Selected area electron diffraction was also carried out on the transmission electron microscopy foils for revealing the detailed microstructural characterization. Glow discharge optical emission spectrum was used for carburization analysis. The results show that the weight gain of materials decreases with the increase of Al content, and the weight gain of 3.5wt% Al steel is only about 0.022 mg/cm2. The weight gain against exposure time of different materials follows the parabolic growth law approximately, which indicates that the corrosion behavior is mainly controlled by diffusion. When the content of Al is less than 1.5wt%, a dual-layer Fe-rich oxide film is formed on the surface with poor protection. Some pores were observed within it, which can cause oxidation and carburization. Carburization occurs on Al-free steel and the depth of the carburization region can be up to about 12 μm. When the content of Al is higher than 2.5wt%, protective oxide films are formed on the surface. Its outer layer is mainly rich in Cr and the inner layer is rich in Al. The Al layer on 2.5wt% and 3.5wt% Al containing steel is more continuous. These oxides own better corrosion resistance than that formed on 1.5wt% steel. Although more protective oxides are formed, carburization still exists in the oxide film and matrix of this kind of materials, while the thickness of the carburization region decreases to about 6 μm. Higher Al content, above 2.5wt%, can effectively facilitate the formation of protective Al-rich oxide film, which hinders the outward diffusion of Fe and the inward diffusion of C. It further improves the oxidation and carburizing resistance of materials, which will be useful in the supercritical carbon dioxide nuclear power plant.

     

  • [1] 黄彦平,王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程,2012,33(3):21-27. HUANG Yanping, WANG Junfeng. Application of supercritical carbon dioxide in nuclear reactor system[J]. Nuclear Power Engineering, 2012, 33(3): 21-27(in Chinese).
    [2] 吴攀,高春天,单建强. 超临界二氧化碳布雷顿循环在核能领域的应用[J]. 现代应用物理,2019,10(3):79-88. WU Pan, GAO Chuntian, SHAN Jianqiang. Application of supercritical carbon dioxide Brayton cycle in nuclear engineering[J]. Modern Applied Physics, 2019, 10(3): 79-88(in Chinese).
    [3]

    FURUKAWA T, INAGAKI Y, ARITOMI M. Compatibility of FBR structural materials with supercritical carbon dioxide[J]. Progress in Nuclear Energy, 2011, 53(7): 1050-1055.

    [4] 肖博,朱忠亮,李瑞涛,等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展[J]. 热力发电,2020,49(10):30-37. XIAO Bo, ZHU Zhongliang, LI Ruitao, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid[J]. Thermal Power Generation, 2020, 49(10): 30-37(in Chinese).
    [5] 梁志远,桂雍,赵钦新. 超临界CO2动力循环高温材料腐蚀研究进展[J]. 动力工程学报,2021,41(11):910-917. LIANG Zhiyuan, GUI Yong, ZHAO Qinxin. Research progress on corrosion of high-temperature materials in supercritical CO2 power cycle[J]. Journal of Chinese Society of Power Engineering, 2021, 41(11): 910-917(in Chinese).
    [6] 刘蔚伟,杨鸿,姜峨,等. 超临界二氧化碳核能动力转换系统关键材料腐蚀行为研究[J]. 原子能科学技术,2021,55(增刊):242-248. LIU Weiwei, YANG Hong, JIANG E, et al. Corrosion behavior research of critical material for supercritical carbon dioxide nuclear power conversion system[J]. Atomic Energy Science and Technology, 2021, 55(Suppl.): 242-248(in Chinese).
    [7]

    OSTWALD C, GRABKE H J. Initial oxidation and chromium diffusion Ⅰ: Effects of surface working on 9-20% Cr steels[J]. Corrosion Science, 2004, 46(5): 1113-1127.

    [8]

    YANG H, LIU W, GONG B, et al. Corrosion behavior of typical structural steels in 500℃, 600℃ and high pressure supercritical carbon dioxide conditions[J]. Corrosion Science, 2021, 192: 109801.

    [9]

    YOUNG D J, ZHANG J. Corrosion by hot CO2 gases[J]. The Electrochemical Society Interface, 2021, 30(2): 73-76.

    [10]

    YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436.

    [11]

    ZHANG J, SPECK P, YOUNG D J. Metal dusting of alumina-forming creep-resistant austenitic stainless steels[J]. Oxidation of Metals, 2011, 77(3-4): 167-187.

    [12]

    HE L, ROMAN P, LENG B, et al. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide[J]. Corrosion Science, 2014, 82: 67-76.

    [13]

    SHI H, JIANU A, WEISENBURGER A, et al. Corrosion resistance and microstructural stability of austenitic Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten lead[J]. Journal of Nuclear Materials, 2019, 524: 177-190.

    [14] 刘珠,郭相龙,王鹏,等. 310S不锈钢在超临界二氧化碳中的腐蚀行为研究[J]. 核动力工程,2020,41(S1):183-187. LIU Zhu, GUO Xianglong, WANG Peng, et al. Corrosion behavior of 310S stainless steel in supercritical carbon dioxide[J]. Nuclear Power Engineering, 2020, 41(S1): 183-187(in Chinese).
    [15]

    CHEN H, KIM S H, KIM C, et al. Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650℃[J]. Corrosion Science, 2019, 156: 16-31.

    [16]

    LEE H J, KIM H, KIM S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment[J]. Corrosion Science, 2015, 99: 227-239.

    [17]

    LIU Z, LU J, SU H, et al. On the role of mechanical deformation in the environmental degradation of 310S stainless steels in supercritical carbon dioxide[J]. Corrosion Science, 2022, 207: 110537.

    [18]

    LEE H J, SUBRAMANIAN G O, KIM S H, et al. Effect of pressure on the corrosion and carburization behavior of chromia-forming heat-resistant alloys in high-temperature carbon dioxide environments[J]. Corrosion Science, 2016, 111: 649-658.

    [19]

    CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corrosion Science, 2012, 60: 246-255.

    [20]

    MOSKALIOVIENE T, GALDIKAS A. Kinetic model of anisotropic stress assisted diffusion of nitrogen in nitrided austenitic stainless steel[J]. Surface and Coatings Technology, 2019, 366: 277-285.

    [21]

    WANG H, YU H, KONDO S, et al. Corrosion behaviour of Al-added high Mn austenitic steels in molten lead bismuth eutectic with saturated and low oxygen concentrations at 450℃[J]. Corrosion Science, 2020, 175: 108864.

    [22]

    MAHAFFEY J, SCHROEDER A, ADAM D, et al. Effects of CO and O2 impurities on supercritical CO2 corrosion of alloy 625[J]. Metallurgical and Materials Transactions A, 2018, 49(8): 3703-3714.

    [23]

    YOUNG D J. High temperature oxidation and corrosion of metals[M]. [S. l.]: Elsevier, 2008: 31-51.

    [24]

    NGUYEN T D, ZHANG J, YOUNG D J. Effects of silicon and water vapour on corrosion of Fe-20Cr and Fe-20Cr-20Ni alloys in CO2 at 650℃[J]. Oxidation of Metals, 2017, 87(3): 541-573.

    [25]

    AKANDA S R, OLEKSAK R P, REPUKAITI R, et al. Effect of thickness on degradation of austenitic 347H steel by direct-fired supercritical CO2 power cycle environment[J]. Corrosion Science, 2021, 192: 109795.

    [26]

    SHI H, JIANU A, FETZER R, et al. Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead[J]. Corrosion Science, 2021, 189: 109593.

    [27]

    ORTIZ L, CHURCH B. Rate of coke formation of centrifugally cast austenitic chromia-forming and alumina-forming alloys in coking conditions[J]. Corrosion Science, 2021, 190: 109637.

    [28]

    CHEN J, ROGERS P, LITTLE J. Oxidation behavior of several chromia-forming commercial nickel-base superalloys[J]. Oxidation of Metals, 1997, 47: 381-410.

  • 期刊类型引用(1)

    1. 陈浩,李丹,刘永飞,姚海元,陈景杰,徐云泽. 疏浚用Q235钢和高锰钢冲刷腐蚀机理研究. 装备环境工程. 2024(07): 132-139 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  52
  • HTML全文浏览量:  2
  • PDF下载量:  24
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-07-14
  • 网络出版日期:  2024-02-18

目录

    /

    返回文章
    返回