平板型电极对热离子能量转换特性的测试技术研究

马茹, 金睿, 么斯雨, 任思琪, 齐立君, 钟武烨

马茹, 金睿, 么斯雨, 任思琪, 齐立君, 钟武烨. 平板型电极对热离子能量转换特性的测试技术研究[J]. 原子能科学技术, 2024, 58(4): 887-895. DOI: 10.7538/yzk.2023.youxian.0413
引用本文: 马茹, 金睿, 么斯雨, 任思琪, 齐立君, 钟武烨. 平板型电极对热离子能量转换特性的测试技术研究[J]. 原子能科学技术, 2024, 58(4): 887-895. DOI: 10.7538/yzk.2023.youxian.0413
MA Ru, JIN Rui, YAO Siyu, REN Siqi, QI Lijun, ZHONG Wuye. Research on Testing Technology for Thermionic Energy Conversion Characteristics of Flat Electrode Pair[J]. Atomic Energy Science and Technology, 2024, 58(4): 887-895. DOI: 10.7538/yzk.2023.youxian.0413
Citation: MA Ru, JIN Rui, YAO Siyu, REN Siqi, QI Lijun, ZHONG Wuye. Research on Testing Technology for Thermionic Energy Conversion Characteristics of Flat Electrode Pair[J]. Atomic Energy Science and Technology, 2024, 58(4): 887-895. DOI: 10.7538/yzk.2023.youxian.0413

平板型电极对热离子能量转换特性的测试技术研究

基金项目: 

中核集团“青年英才”项目(219602)

详细信息
  • 中图分类号: TL35

Research on Testing Technology for Thermionic Energy Conversion Characteristics of Flat Electrode Pair

  • 摘要: 为开展热离子能量转换器基础性能数据的研究,基于平板型电极热离子能量转换基础试验装置建立了针对电极对热电转换特性的测试技术,通过开展W-Mo电极对的热离子发电测试,对所建立的测试技术进行了验证及评价,并分析了热离子发电参数对输出特性的影响规律。结果表明:所建立的测试技术可准确测量发射极有效功函数值;利用热离子基础试验装置测得的W-Mo电极对的最大输出功率密度为5.6W/cm2,对应的发电参数为发射极温度1800K,铯壶温度577K,输出电压0.7V。

     

    Abstract: The thermionic energy converter is a static thermoelectric conversion device, which is the core component of the thermionic nuclear reactor. To improve the conversion efficiency of thermionic energy converters, it is necessary to test its basic performance and conduct research on the optimization mechanism of its thermoelectric performance. At present, a basic experimental device of thermionic energy converter with the flat electrode pair has been developed in China, which can be used to achieve isothermal equipotential of electrodes during the power generation experiments. However, the corresponding analysis method of thermoelectric characteristic of electrodes has not yet been established, so it is urgent to set up a reasonable testing technology for the analysis of the basic thermionic performance. By drawing inspiration from the theory and empirical formula of thermionic energy conversion, and combining with the test data of voltammetry characteristics obtained in experiments, a specialized testing technology for the thermoelectric conversion characteristics of flat electrode pair was established. Then, the tests of thermoelectric conversion of W-Mo electrode pair with the basic experimental device was conducted. The established testing technology was validated and evaluated by comparing the values of the effective work function of the tungsten emitter tested in the experimental device with the theoretical and experimental values in the literature. And the results show that the measured values of the effective work function of the emitter in this study are consistent with those in the literature, indicating that the established testing technology was accurate and reasonable. Therefore, it can be asserted that this testing technology can be used to analyze the output electrical characteristics of a flat electrode type thermionic energy conversion device. What’s more, the thermoelectric conversion performance of W-Mo electrode pairs was further studied using this testing technique. The influence of power generation parameters, including emitter temperature and cesium pot temperature, on the output characteristics of W-Mo electrode pair were analyzed through a series of thermoelectric conversion experiments. The results show that the emitter temperature has a more significant impact on the output power density of the thermionic energy converter. As the emitter temperature increases, the output voltage correspondingly increases; and within the range of 1 600-1 900 K for the emitter temperature, the corresponding optimal cesium pot temperature is 577 K, with cesium pressure of 267.7 Pa. Moreover, the maximum output power density of the W-Mo electrode pair measured using the thermionic basic experimental device is 5.6 W/cm2, corresponding to the power generation parameters of the emitter temperature TE=1 800 K, cesium pot temperature TCs=577 K, and output voltage V=0.7 V. This result can provide parameter reference for the application of the W-Mo electrode pair in thermionic energy converters.

     

  • [1] 钟武烨,赵守智,郑剑平,等.空间热离子能量转换技术发展综述[J].深空探测学报,2020,7(1):47-60.ZHONG Wuye, ZHAO Shouzhi, ZHENG Jianping, et al. A review of technology development of thermionic energy conversion for space application[J]. Journal of DeeSpace Exploration, 2020, 7(1):47-60(in Chinese).
    [2] 何宇豪,孟涛,卢瑞博,等.空间核反应堆电源研究进展[J].上海航天,2019,36(6):126-133.HE Yuhao, MENG Tao, LU Ruibo, et al. Advances in space nuclear reactor power source research[J]. Aerospace Shanghai, 2019, 36(6):126-133(in Chinese).
    [3]

    EL-GENK M S. Space nuclear reactor power system concepts with static and dynamic energy conversion[J]. Energy Conversion and Management, 2008, 49(3):402-411.

    [4]

    ABDUL K A, LEONG T J, MOHAMED K. Review on thermionic energy converters[J]. IEEE Transactions on Electron Devices, 2016, 63(6):2231-2241.

    [5]

    CAMPBELL M F, CELENZA T J, SCHMITT F, et al. Progress toward high power output in thermionic energy converters[J]. Advanced Science, 2021, 8(9):2003812.

    [6] 周彪,吉宇,孙俊,等.空间核反应堆电源需求分析研究[J].原子能科学技术,2020,54(10):1912-1923.ZHOU Biao, JI Yu, SUN Jun, et al. Research on space nuclear reactor power demand analysis[J]. Atomic Energy Science and Technology, 2020, 54(10):1912-1923(in Chinese).
    [7] 杨继材,柯国土,郑剑平,等.空间核电源中的热电转换[M].哈尔滨:哈尔滨工程大学出版社,2017.
    [8] 乌拉考夫,尼奇基恩,叶曼亚诺夫.热离子转换器的理论基础[R].北京:中国原子能科学研究院,1999.
    [9]

    LEE J, BARGATIN I, MELOSH N A, et al. Optimal emitter-collector gafor thermionic energy converters[J]. Applied Physics Letters, 2012, 100(17):173904.

    [10] 卢浩琳,孙喆,苏惠琴,等.钨镍圆柱型热离子能量转换器[J].原子能科学技术,1982(5):516-520.LU Haolin, SUN Zhe, SU Huiqin, et al. Tungsten nickel cylindrical thermionic energy converter[J]. Atomic Energy Science and Technology, 1982(5):516-520(in Chinese).
    [11] 曹绳全,杨继材.反应堆热离子转换器[J].核科学与工程,1984,4(8):227-232.CAO Shengquan, YANG Jicai. Thermionic converter for space reactor[J]. Chinese Jurnal of Nuclear Science and Engineering, 1984, 4(8):227-232(in Chinese).
    [12]

    EL-GENK M S, MOMOZAKI Y. An experimental investigation of the performance of a thermionic converter with planar molybdenum electrodes for low temperature applications[J]. Energy Conversion and Management, 2002, 43:911-936.

    [13]

    HATSOPOILOS G N, GYFTOPOILOS E P. Thermionic energy conversion Ⅰ:Processes and devices[M]. Cambrige:MIT Press, 1973.

    [14]

    HATSOPOULOS G N, GYFTOPOILOS E P. Thermionic energy conversion Ⅱ:Theory, technology, and application[M]. Cambrige:MIT Press, 1973.

    [15]

    DESPLAT J. Evaluation of oxygen-dispensing collectors for thermionics[J]. Space Technology & Application, International Forum, 1999, 458:1452-1457.

    [16]

    RASOR N S, WARNER C. Correlation of emission processes for adsorbent alkali films on metal surfaces[J]. Journal of Applied Physics, 1964, 35(9):2589-2600.

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  21
  • HTML全文浏览量:  5
  • PDF下载量:  16
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-06-08
  • 修回日期:  2023-08-14
  • 网络出版日期:  2024-04-24

目录

    /

    返回文章
    返回