[1] |
KIM J, PEARTON S J, FARES C, et al. Radiation damage effects in Ga2O3 materials and devices[J]. Journal of Materials Chemistry C, 2019, 7(1): 10-24.
|
[2] |
TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501.
|
[3] |
NATION S A, MASSENGILL L W, MCMORROW D, et al. Laser dose-rate simulation to complement LINAC discrete device data[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3114-3121.
|
[4] |
TANG G, LI M, SUN P, et al. A charge collection equivalent method for laser simulation of dose rate effects with improved performance[J]. IEEE Transactions on Nuclear Science, 2021, 68(6): 1235-1243.
|
[5] |
TANG G, SUN P, KANG J, et al. Laser-assisted simulation of dose-rate effects of neutron-irradiated NPN transistors[J]. IEEE Transactions on Nuclear Science, 2022, 69(5): 1167-1175.
|
[6] |
TANG G, LI M, SUN P, et al. Surface metallization influence on equivalence of laser simulation of dose-rate effects[J]. IEEE Transactions on Nuclear Science, 2018, 65(12): 2852-2861.
|
[7] |
CAO W, WANG L, LI T, et al. Laser simulation of transient ionizing radiation effects in the 0.18 μm CMOS inverter chain[C]∥2019 3rd International Conference on Radiation Effects of Electronic Devices(ICREED). Chongqing: IEEE, 2019.
|
[8] |
CAO W, ZHAO Y, WANG L, et al. Laser simulation of transient ionizing radiation effects in the double-power integrated circuit[C]∥2020 IEEE 3rd International Conference on Electronics Technology (ICET). Chengdu: IEEE, 2020.
|
[9] |
YUAN L, DENG H, LI S, et al. Unified theory of direct or indirect band-gap nature of conventional semiconductors[J]. Physical Review B, 2018, 98(24): 245203.
|
[10] |
CLAEYS C, SIMOEN E. Radiation effects in advanced semiconductor materials and devices[M]. Germany: Springer Science & Business Media, 2002.
|
[11] |
YAKIMOV E B, POLYAKOV A Y, SHCHEMEROV I V, et al. Experimental estimation of electron-hole pair creation energy in β-Ga2O3[J]. Applied Physics Letters, 2021, 118(20): 202106.
|
[12] |
NIKIFOROV A Y, SKOROBOGATOV P K. Physical principles of laser simulation for the transient radiation response of semiconductor structures, active circuit elements, and circuits: A linear model[J]. Russian Microelectronics, 2004, 33(2): 68-79.
|
[13] |
ALEXANDER D R. Transient ionizing radiation effects in devices and circuits[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 565-582.
|
[14] |
LIN M E, MA Z, HUANG F, et al. Low resistance ohmic contacts on wide band-gap GaN[J]. Applied Physics Letters, 1994, 64(8): 1003-1005.
|
[15] |
FILATOVA E O, KONASHUK A S. Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: Connection with different local symmetries[J]. The Journal of Physical Chemistry C, 2015, 119(35): 20755-20761.
|
[16] |
XIA X, LI J, SHARMA R, et al. Radiation damage in the ultra-wide bandgap semiconductor Ga2O3[J]. ECS Journal of Solid State Science and Technology, 2022, 11(9): 95001.
|
[17] |
BACH S B, MCELVANY S W. Determination of the ionization potentials of aluminum oxides via charge transfer[J]. The Journal of Physical Chemistry, 1991, 95(23): 9091-9094.
|
[18] |
WIETS M, WEINELT M, FAUSTER T. Electronic structure of SiC(0001) surfaces studied by two-photon photoemission[J]. Physical Review B, 2003, 68(12): 125321.
|
[19] |
WRBANEK J D, WRBANEK S Y, FRALICK G C, et al. Micro-fabricated solid-state radiation detectors for active personal dosimetry[R]. USA: NASA, 2007.
|
[20] |
HEERA V, PROKERT F, SCHELL N, et al. Density and structural changes in SiC after amorphization and annealing[J]. Applied Physics Letters, 1997, 70(26): 3531-3533.
|
[21] |
SHIBATA H, WASEDA Y, OHTA H, et al. High thermal conductivity of gallium nitride(GaN) crystals grown by HVPE process[J]. Materials Transactions, 2007, 48(10): 2782-2786.
|
[22] |
OSIPOV A V, SHAROFIDINOV S S, OSIPOVA E V, et al. Growth and optical properties of Ga2O3 layers of different crystalline modifications[J]. Coatings, 2022, 12(12): 1802.
|
[23] |
AHMAD I, UNWIN M, CAO H, et al. Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations[J]. Composites Science and Technology, 2010, 70(8): 1199-1206.
|
[24] |
MELINGER J S, BUCHNER S, MCMORROW D, et al. Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies[J]. IEEE Transactions on Nuclear Science, 1994, 41(6): 2574-2584.
|
[25] |
NIKIFOROV A, SKOROBOGATOV P K. Physical principles of laser simulation for the transient radiation response of semiconductor structures, active circuit elements, and circuits: A nonlinear model[J]. Russian Microelectronics, 2006, 35: 138-149.
|
[26] |
BORSHCH A A, STARKOV V N, VOLKOV V I, et al. Optical limiting effects in nanostructured silicon carbide thin films[J]. Quantum Electronics, 2013, 43(12): 1122.
|
[27] |
KELLY M K, AMBACHER O, DAHLHEIMER B, et al. Optical patterning of GaN films[J]. Applied Physics Letters, 1996, 69(12): 1749-1751.
|
[28] |
APEL O, MANN K, ZOELLER A, et al. Nonlinear absorption of thin Al2O3 films at 193 nm[J]. Applied Optics, 2000, 39(18): 3165-3169.
|
[29] |
SUN C, HUANG Y, LIANG J, et al. Large near resonance third order nonlinearity in GaN[J]. Optical and Quantum Electronics, 2000, 32: 619-640.
|
[30] |
MUTH J F, LEE J H, SHMAGIN I K, et al. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements[J]. Applied Physics Letters, 1997, 71(18): 2572-2574.
|
[31] |
SRIDHARA S G, DEVATY R P, CHOYKE W J. Absorption coefficient of 4H silicon carbide from 3 900 to 3250 [J]. Journal of Applied Physics, 1998, 84(5): 2963-2964.
|