一种新型高抗辐照可配置SOI器件技术

A Novel Configurable SOI Technology with Extremely High Radiation Tolerance

  • 摘要: 本文介绍了一种新型的高抗辐照可配置SOI(configurable-SOI, CSOI)器件技术。CSOI器件在制备完成后,可以通过改变配置层电压,实现对总剂量辐照引起的性能退化进行补偿、对单粒子引起寄生晶体管放大进行抑制,从而提升器件的抗辐照性能。基于CSOI工艺,研制出了高抗辐照4kb SRAM验证芯片。辐照实验证实,该芯片的抗总剂量水平达到6 Mrad(Si)、单粒子翻转阈值大于118 (MeV·cm2)/mg,达到国际先进水平,有望应用于深空探测、核应急等极端领域。

     

    Abstract: Deep space exploration, nuclear industry and high energy physics raise higher requirements for the radiation hardness of integrated circuits. However, the existing radiation hardening technologies, such as radiation hardness by design based on bulk silicon technology or silicon-on insulator (SOI) process, are difficult to ensure that the electronics in spacecrafts and nuclear facilities function well in extreme space and nuclear radiation environments. In response to the lack of clear technical paths for the development of ultra-high radiation-hardened chip, a new type of highly radiation-hardened technique was introduced in this paper, named configurable SOI (CSOI). This technology innovatively employs twice bonding and cutting method to fabricate ultra-high radiation hardened 200 mm wafers with embedded configurable silicon layers. The 0-18 μm CSOI complementary metal oxide semiconductor (CMOS) process was successfully developed, which opens up a new route to achieve radiation hardness through in-situ radiation compensation. After the fabrication of CSOI devices, the configuration layer voltage can be tuned flexibly to compensate for the performance degradation due to total ionizing dose (TID) effect and simultaneously suppress the parasitic transistor effect triggered by single event effects (SEE). This helps to improve the radiation hardness of the CSOI transistors. Technology computer aided design (TCAD) simulations validate the tuning mechanism of configurable layer that a negative bias does good to the hardness of both TID and SEE in N-type MOSFET. Based on the CSOI process platform, a design methodology for integrated circuits was developed through assessing the impact of tuning granularity (down to transistor level) and range (from -20 V to 5 V) of configurable layer on the performance and radiation tolerance of static random-access memory (SRAM) cell. Then, the optimized tuning strategy of configurable layer was determined, and a CSOI 4kb SRAM was designed and fabricated with high radiation tolerance. The TID irradiation of the CSOI 4kb SRAM chip was performed at the 60Co gamma irradiation source of Peking University and the SEE experiment was carried out at the Space Environment Simulation and Research Infrastructure (SESRI) in Harbin Institute of Technology. Radiation experiments confirm that the CSOI SRAM achieves up to a level of 6 Mrad(Si) for TID hardness and the threshold of single event upset is greater than 118 (MeV·cm2)/mg, which reaches world-class levels. It is expected to be applied in extreme fields such as deep space exploration and nuclear emergency.

     

/

返回文章
返回