Effects of Strain Channel on Electron Irradiation Tolerance of InP-based HEMT Structures

Effects of Strain Channel on Electron Irradiation Tolerance of InP-based HEMT Structures

  • 摘要: The introduction of strain InxGa1-xAs channel with high In content increases the confinement of the two-dimensional electron gas (2DEG) and further improves the high-frequency performance of InGaAs/InAlAs/InP HEMTs. The effect of InxGa1-xAs channel with different In contents on electron irradiation tolerance of InP-based HEMT structures in terms of 2DEG mobility and density has been investigated. The experiment results show that, after the same high electron irradiation dose, the 2DEG mobility and density in InP-based HEMT structures with strain InxGa1-xAs (x>0.53) channel decrease more dramatically than that without strain In0.53Ga0.47As channel. Moreover, the degradation of 2DEG mobility and density becomes more severe as the increase of In content and strain in the InxGa1-xAs channel. The research results can provide some suggestions for the design of radiation-resistant InP-based HEMTs. 

     

    Abstract: The introduction of strain InxGa1-xAs channel with high In content increases the confinement of the two-dimensional electron gas (2DEG) and further improves the high-frequency performance of InGaAs/InAlAs/InP HEMTs. The effect of InxGa1-xAs channel with different In contents on electron irradiation tolerance of InP-based HEMT structures in terms of 2DEG mobility and density has been investigated. The experiment results show that, after the same high electron irradiation dose, the 2DEG mobility and density in InP-based HEMT structures with strain InxGa1-xAs (x>0.53) channel decrease more dramatically than that without strain In0.53Ga0.47As channel. Moreover, the degradation of 2DEG mobility and density becomes more severe as the increase of In content and strain in the InxGa1-xAs channel. The research results can provide some suggestions for the design of radiation-resistant InP-based HEMTs. 

     

/

返回文章
返回