新型硅基焦磷酸锆离子交换剂的制备及其对Cs+的吸附性能研究

刁新雅, 郝乐存, 马锋, 赵昕, 靳强, 陈宗元, 郭治军, 吴王锁

刁新雅, 郝乐存, 马锋, 赵昕, 靳强, 陈宗元, 郭治军, 吴王锁. 新型硅基焦磷酸锆离子交换剂的制备及其对Cs+的吸附性能研究[J]. 原子能科学技术, 2024, 58(11): 2290-2298. DOI: 10.7538/yzk.2024.youxian.0008
引用本文: 刁新雅, 郝乐存, 马锋, 赵昕, 靳强, 陈宗元, 郭治军, 吴王锁. 新型硅基焦磷酸锆离子交换剂的制备及其对Cs+的吸附性能研究[J]. 原子能科学技术, 2024, 58(11): 2290-2298. DOI: 10.7538/yzk.2024.youxian.0008
DIAO Xinya, HAO Lecun, MA Feng, ZHAO Xin, JIN Qiang, CHEN Zongyuan, GUO Zhijun, WU Wangsuo. Preparation of Novel Silica-based Zirconium Pyrophosphate Ion-exchanger and Its Adsorption Performance for Cs+[J]. Atomic Energy Science and Technology, 2024, 58(11): 2290-2298. DOI: 10.7538/yzk.2024.youxian.0008
Citation: DIAO Xinya, HAO Lecun, MA Feng, ZHAO Xin, JIN Qiang, CHEN Zongyuan, GUO Zhijun, WU Wangsuo. Preparation of Novel Silica-based Zirconium Pyrophosphate Ion-exchanger and Its Adsorption Performance for Cs+[J]. Atomic Energy Science and Technology, 2024, 58(11): 2290-2298. DOI: 10.7538/yzk.2024.youxian.0008

新型硅基焦磷酸锆离子交换剂的制备及其对Cs+的吸附性能研究

基金项目: 甘肃省科技重大专项(21ZD8JA006);甘肃省科技计划项目(22JR5RA480);兰州大学中央高校基本科研业务费专项资金(lzujbky-2023-stlt01,lzujbky-2022-sp05,lzujbky-2022-kb01)
详细信息
    通讯作者:

    靳 强

    陈宗元

  • 中图分类号: TL99;O647.32

Preparation of Novel Silica-based Zirconium Pyrophosphate Ion-exchanger and Its Adsorption Performance for Cs+

  • 摘要:

    放射性废液中放射性Cs+的高效去除和回收对于降低废物处置成本、促进资源循环利用具有重要意义。本文采用溶胶-凝胶共沉淀和高温处理相结合的新方法,合成了一种成本低廉的新型无机离子交换树脂硅基焦磷酸锆,采用SEM、FT-IR、XRF、XRD等手段对新树脂进行了表征,并通过静态吸附实验及柱实验系统测定了在弱酸性溶液中其对Cs+的吸附性能。结果显示,Cs+在该树脂上的吸附过程符合准二级动力学模型,吸附在6 h内达到平衡。在0.001 mol/L HNO3溶液中,该树脂对Cs+的静态吸附容量可达2.7 mg/g。树脂对Cs+的吸附具有良好的选择性,Cs+与高放废液中其他共存金属离子的分离因子均大于1.5。此外,柱实验结果显示树脂颗粒柱负载的Cs+可以被2.0 mol/L NH4NO3有效洗脱回收。

     

    Abstract:

    Efficient removal and recovery of radioactive Cs+ from high-level liquid waste (HLLW) is of great significance for reducing disposal cost and promoting nuclear resource recycling. Due to the significant selectivity for Cs+, zirconium pyrophosphate possesses great potential to uptake Cs+ from HLLW, whereas the micro-crystalline structure and fine powder morphology limits its industrial application with column separation. In this study, a new method combining sol-gel and high-temperature treatment was developed, and a novel silica-based zirconium pyrophosphate resin was prepared by this method. The prepared resin was characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra, X-ray fluorescence (XRF), X-ray diffraction (XRD), N2 adsorption/desorption isotherms and the universal testing machine, and its adsorption performance for Cs+ in weakly acidic solution was determined using both batch-type and dynamic column experiments in terms of the kinetics, equilibrium capacity and selectivity. The characterization results indicate the successful fabrication of silica-based zirconium pyrophosphate resin with excellent physical and chemical stability. Batch-type experiments demonstrate that Cs+ adsorption on the resin is equilibrated within 6 h, and the adsorption kinetics could be described by a pseudo-second-order model. Due to the competing adsorption of H+, the adsorption rate of Cs+ exhibits a decrease as the concentration of HNO3 increasing from 0.001 mol/L to 2.0 mol/L. The adsorption capacity of Cs+ increases significantly with the increase of initial Cs+ concentration, and the adsorption of Cs+ on the resin can be well fitted with Langmuir model. This implies that the adsorption process of Cs+ by the resin is a homogeneous single-layer adsorption process. The maximum adsorption capacity of silica-based zirconium pyrophosphate resin for Cs+ is determined to be 2.7 mg/g with batch-type experiment in 0.001 mol/L HNO3. More importantly, the resin exhibits high selectivity for Cs+ uptake over 8 co-existing metal ions in simulated HLLW, and the separation factor of Cs+ towards other coexisting ions is more than 1.5. Furthermore, the column experiment results indicate that the Cs+ adsorbed on the resin could be eluted effectively by 2.0 mol/L NH4NO3, and the desorption efficiency is greater than 80%. This demonstrates that the resin can serve as the stationary phase in columns for the efficient removal and recovery of Cs+.

     

  • 图  1   硅基焦磷酸锆树脂颗粒的实物照片(a)、表面SEM形貌(b、c)及EDX能谱(d)

    Figure  1.   Photographic image (a), surface SEM image (b, c) and corresponding EDX energy spectrum (d) of silica-based zirconium pyrophosphate resin particles

    图  2   焦磷酸锆和硅基焦磷酸锆树脂颗粒的XRD谱(a)和硅基焦磷酸锆树脂颗粒的FT-IR谱(b)

    Figure  2.   XRD patterns of zirconium pyrophosphate and silica-based zirconium pyrophosphate resin particles (a) and FT-IR spectra of silica-based zirconium pyrophosphate resin particles (b)

    图  3   Cs+在硅基焦磷酸锆树脂颗粒上的吸附动力学曲线

    Figure  3.   Adsorption kinetics curve of Cs+ on silica-based zirconium pyrophosphate resin particles

    图  4   HNO3浓度对硅基焦磷酸锆树脂颗粒吸附Cs+的影响

    Figure  4.   Effect of HNO3 concentration on adsorption of Cs+ on silica-based zirconium pyrophosphate resin particles

    图  5   Cs+在硅基焦磷酸锆树脂颗粒上的吸附等温线

    Figure  5.   Adsorption isotherm of Cs+ on silica-based zirconium pyrophosphate resin particle

    图  6   模拟高放废液中各离子的吸附分配比(a)和分离因子(b)

    Figure  6.   Distribution coefficients (a) and separation factors (b) of metal ions in simulated high-level liquid waste

    图  7   Cs+在硅基焦磷酸锆树脂颗粒柱中的穿透曲线(a)和洗脱曲线(b)

    Figure  7.   Breakthrough curve (a) and elution curve (b) of Cs+ in silicon-based zirconium pyrophosphate resin particle column

    表  1   模拟高放废液中共存离子的吸附率

    Table  1   Adsorption percentage of ions in simulated high-level liquid waste

    离子 初始浓度/(mg/L) 上清液浓度/(mg/L) 吸附率/%
    Cs+ 3.00 1.69 43.6
    Al3+ 16.81 14.99 10.8
    Cr3+ 2.00 1.79 10.2
    Fe3+ 20.81 13.60 34.6
    K+ 0.48 0.43 10.4
    Mo(Ⅵ) 1.03 0.68 33.8
    Na+ 53.23 51.52 3.2
    Nd3+ 5.61 5.6 0.1
    Ni2+ 10.87 10.40 4.3
    Sr2+ 0.77 0.74 3.4
    下载: 导出CSV
  • [1]

    YANG G, TAZOE H, YAMADA M. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident[J]. Scientific Reports, 2016, 6: 24119. doi: 10.1038/srep24119

    [2]

    GRAY W J. Fission product transmutation effects on high-level radioactive waste forms[J]. Nature, 1982, 296: 547-549. doi: 10.1038/296547a0

    [3]

    LIU W T, TSAI S C, TSAI T L, et al. An EXAFS study for characterizing the time-dependent adsorption of cesium on bentonite[J]. Environmental Science: Processes & Impacts, 2019, 21(6): 930-937.

    [4]

    SANSONE U, BELLI M, VOITSEKOVITCH O V, et al. 137Cs and 90Sr in water and suspended particulate matter of the Dnieper River-Reservoirs System (Ukraine)[J]. Science of the Total Environment, 1996, 186(3): 257-271. doi: 10.1016/0048-9697(96)05120-0

    [5] 顾忠茂. 我国先进核燃料循环技术发展战略的一些思考[J]. 核化学与放射化学, 2006, 28(1): 1-10. doi: 10.3969/j.issn.0253-9950.2006.01.001

    GU Zhongmao. Some strategic considerations on the development of advance nuclear fuel cycle technologies in China[J]. Journal of Nuclear and Radiochemistry, 2006, 28(1): 1-10(in Chinese). doi: 10.3969/j.issn.0253-9950.2006.01.001

    [6]

    YOSHIKAWA H, SUNADA S, HIRAKAWA H, et al. Radiobiological characterization of canine malignant melanoma cell lines with different types of ionizing radiation and efficacy evaluation with cytotoxic agents[J]. International Journal of Molecular Sciences, 2019, 20(4): 841. doi: 10.3390/ijms20040841

    [7]

    ARTUN O. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery[J]. Modern Physics Letters A, 2017, 32(22): 1750117. doi: 10.1142/S0217732317501176

    [8]

    TOSRI C, CHUSREEAEOM K, LIMTIYAYOTIN M, et al. Comparative effect of high energy electron beam and 137Cs gamma ray on survival, growth and chlorophyll content in curcuma hybrid ‘laddawan’ and determine proper dose for mutations breeding[J]. Emirates Journal of Food and Agriculture, 2019, 31(5): 321-327.

    [9]

    WANG J L, ZHUANG S T. Removal of cesium ions from aqueous solutions using various separation technologies[J]. Reviews in Environmental Science and Bio-technology, 2019, 18(2): 231-269. doi: 10.1007/s11157-019-09499-9

    [10]

    RAHMAN R O A, IBRAHIUM H A, HUNG Y T. Liquid radioactive wastes treatment: A review[J]. Water, 2011, 3(2): 551-565.

    [11]

    CHEN S Q, HU J Y, HAN S J, et al. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade[J]. Separation and Purification Technology, 2020, 251: 117340. doi: 10.1016/j.seppur.2020.117340

    [12]

    HAMOUD M A, ABO-ZAHRA S F, ATTIA M A, et al. Efficient adsorption of cesium cations and chromate anions by one-step process using surfactant-modified zeolite[J]. Environmental Science and Pollution Research, 2023, 30(18): 53140-53156. doi: 10.1007/s11356-023-25644-y

    [13]

    IVANETS A, SHASHKOVA I, KITIKOVA N, et al. Composite metal phosphates for selective adsorption and immobilization of cesium, strontium, and cobalt radionuclides in ceramic matrices[J]. Journal of Cleaner Production, 2022, 376: 134104. doi: 10.1016/j.jclepro.2022.134104

    [14]

    YANG H J, YU H W, SUN J K, et al. Facile synthesis of mesoporous magnetic AMP polyhedric composites for rapid and highly efficient separation of Cs+ from water[J]. Chemical Engineering Journal, 2017, 317: 533-543. doi: 10.1016/j.cej.2017.02.088

    [15]

    JANG J, LEE D S. Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution[J]. Industrial & Engineering Chemistry Research, 2016, 55(13): 3852-3860.

    [16]

    MILCENT T, HERTZ A, BARRÉ Y, et al. Influence of the Nb content and microstructure of sitinakite-type crystalline silicotitanates (CSTs) on their Sr2+ and Cs+ sorption properties[J]. Chemical Engineering Journal, 2021, 426(15): 131425.

    [17] 王启龙, 吴艳, 韦悦周. 硅基磷钼酸铵吸附剂的合成及其对Cs的吸附[J]. 核化学与放射化学, 2014, 36(4): 210-215.

    WANG Qilong, WU Yan, WEI Yuezhou. Synthesis of ammonium molybdopho-sphate (AMP) loaded silica and its adsorption for cesium[J]. Journal of Nuclear and Radiochemistry, 2014, 36(4): 210-215(in Chinese).

    [18] 宋凤丽, 丛海峰, 李辉波, 等. 分离铯的吸附剂焦磷酸氧锆的合成与表征[J]. 核化学与放射化学, 2013, 35(6): 334-338.

    SONG Fengli, CONG Haifeng, LI Huibo, et al. Synthesis and characterization of zirconyl pyrophosphate as an adsorbent for cesium separation[J]. Journal of Nuclear and Radiochemistry, 2013, 35(6): 334-338(in Chinese).

    [19]

    HOLDSWORTH A, ECCLES H, ROWBOTHAM D, et al. The effect of gamma irradiation on the ion exchange properties of caesium-selective ammonium phosphomolybdate-polyacrylonitrile (AMP-PAN) composites under spent fuel recycling conditions[J]. Separations, 2019, 6(2): 23. doi: 10.3390/separations6020023

    [20] 邹京, 王明铭, 豆俊峰, 等. 磷钼酸铵-聚乙烯醇复合材料的制备及其对水中Cs+的吸附性能研究[J]. 环境科学学报, 2021, 41(8): 3219-3234.

    ZOU Jing, WANG Mingming, DOU Junfeng, et al. Preparation of ammonium molybdophosphate-polyvinyl alcohol composite and its use of cesium adsorption in aqueous solution[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3219-3234(in Chinese).

    [21] 安莲英, 张春霞, 黄献奖. 磷钨酸铵-海藻酸钙复合吸附剂的制备及其铷吸附热力学及动力学[J]. 化工学报, 2016, 67(4): 1378-1385.

    AN Lianying, ZHANG Chunxia, HUANG Xianjiang. Preparation of ammonium tungstophosphate-calcium alginate composite adsorbent and adsorption thermodynamic and kinetic characteristics to rubidium[J]. CIESC Journal, 2016, 67(4): 1378-1385(in Chinese).

    [22]

    DAN H, XIAN Q, CHEN L, et al. One-step direct synthesis of mesoporous AMP/SBA-15 using PMA as acid media and its use in cesium ion removal[J]. Journal of Nuclear Materials, 2019, 527: 151809. doi: 10.1016/j.jnucmat.2019.151809

    [23]

    CHAKRAVARTY R, RAM R, PILLAI K T, et al. Ammonium molybdophosphate impregnated alumina microspheres as a new generation sorbent for chromatographic 137Cs/137mBa generator[J]. Journal of Chromatography A, 2012, 1220: 82-91. doi: 10.1016/j.chroma.2011.11.059

    [24] 张晓霞. 多孔性硅基磷钼酸铵吸附剂对裂变产物铯的吸附及固化性能研究[D]. 上海: 上海交通大学, 2017.
    [25]

    MALINA B, LEE Y J, FRÖBA M. Millimeter-sized micellar-templated silica beads and phenylene-bridged mesoporous organosilica beads[J]. Microporous and Mesoporous Materials, 2019, 284: 327-335 doi: 10.1016/j.micromeso.2019.04.028

    [26]

    SONG F L, YANG X W, LI X L, et al. The behavior of cesium adsorption on zirconyl pyrophosphate[J]. Nuclear Science and Techniques, 2016, 27(3): 60. doi: 10.1007/s41365-016-0054-1

    [27] 薛静怡, 吕洪彬, 郑卫芳. 杯芳烃双冠醚萃淋树脂对Cs+的吸附性能[J]. 核化学与放射化学, 2021, 43(4): 323-329.

    XUE Jingyi, LYU Hongbin, ZHENG Weifang. Adsorption behavior of Cs+ on calix-bis-crown extraction resin[J]. Journal of Nuclear and Radiochemistry, 2021, 43(4): 323-329(in Chinese).

    [28] 唐聪明, 张瑜, 李新利, 等. 乙醛低温绿色合成: 焦磷酸锆催化乳酸脱羰反应[J]. 无机化学学报, 2019, 35(5): 819-827.

    TANG Congming, ZHANG Yu, LI Xinli, et al. Green synthesis of acetaldehyde at low temperature: Decarbonylation of lactic acid catalyzed by zirconium pyrophosphate[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(5): 819-827(in Chinese).

    [29]

    SAFAEI-GHOMI J, PAYMARD-SAMANI S, ZAHEDI S, et al. Sonochemical synthesis of 5-substituted 1H-tetrazoles catalyzed by ZrP2O7 nanoparticles and regioselective conversion into new 2, 5-disubstituted tetrazoles[J]. Zeitschrift Für Naturforschung B, 2015, 70(11): 819-828.

    [30] 熊亮萍, 古梅, 吕开, 等. 焦磷钼酸锆的合成及其与Cs+的交换性能研究[J]. 核技术, 2013, 36(1): 010301.

    XIONG Liangping, GU Mei, LÜ Kai, et al. Synthesis of zirconium molybopyrophosphate and its ion-exchange performance with Cs+[J]. Nuclear Techniques, 2013, 36(1): 010301(in Chinese).

    [31] 郭梦, 余振华, 那平. 硅胶负载焦磷钼酸锆吸附剂的制备及对铯的吸附[J]. 核化学与放射化学, 2017, 39(4): 290-297.

    GUO Meng, YU Zhenhua, NA Ping. Preparation of phosphomolybdic acid zirconium loaded silocone and its adsorption performance of cesium[J]. Journal of Nuclear and Radiochemistry, 2017, 39(4): 290-297(in Chinese).

    [32] 胡佩卓, 刘莲, 王海静, 等. 磷钼酸铵/聚丙烯酸复合凝胶吸附剂的合成及对铯的分离[J]. 核化学与放射化学, 2019, 41(4): 361-369. doi: 10.7538/hhx.2019.YX.2019016

    HU Peizhuo, LIU Lian, WANG Haijing, et al. Synthesis of ammonium phosphomolybdate/polyacrylic acid composite gel adsorbent and separation of cesium[J]. Journal of Nuclear and Radiochemistry, 2019, 41(4): 361-369(in Chinese). doi: 10.7538/hhx.2019.YX.2019016

    [33] 宋凤丽, 李辉波, 苏哲, 等. 焦磷酸氧锆对铯的吸附性能[J]. 核化学与放射化学, 2014, 36(1): 60-64. doi: 10.7538/hhx.2014.36.01.0060

    SONG Fengli, LI Huibo, SU Zhe, et al. Adsorption behavior of cesium on zirconyl pyrophosphate[J]. Journal of Nuclear and Radiochemistry, 2014, 36(1): 60-64(in Chinese). doi: 10.7538/hhx.2014.36.01.0060

    [34]

    KOYAMA S I, SUZUKI T, OZAWA M. From waste to resource, nuclear rare metals as a dream of modern alchemists[J]. Energy Conversion and Management, 2010, 51(9): 1799-1805. doi: 10.1016/j.enconman.2009.11.013

    [35] 王建晨, 宋崇立, 陈靖. 杯冠化合物从高放废液中萃取Cs的研究[C]//第七届核化学与放射化学学术研讨会. 北京: 中国核学会核化学与放射化学分会, 2005.
图(7)  /  表(1)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  92
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-03-17
  • 网络出版日期:  2024-05-07
  • 刊出日期:  2024-11-19

目录

    /

    返回文章
    返回