Finite Element Based Multi-dimension and Multi-physics Coupling Analysis for Nuclear Reactor System
-
摘要: 核反应堆系统庞杂且运行环境严苛,存在多物理场耦合的复杂现象。早期开发的多物理场耦合软件具有扩展性和通用性不足的缺点。因此,搭建多物理场耦合框架,针对耦合问题中的关键技术开展研究,对加快我国自主化多物理场耦合平台开发进程具有重要意义。本文介绍了西安交通大学核反应堆热工水力研究室开发的核反应堆多维度多物理场耦合有限元分析平台,主要包含热工流体计算模型的开发、燃料性能分析技术的研究以及多物理场耦合框架的建立等工作。在热工流体计算方面,开展了核反应堆系统两相流分析模型和液态金属快堆子通道分析模型研究,开发了系统分析程序NUSAC和子通道分析程序FLARE;在燃料性能分析技术方面,开展了包覆颗粒弥散燃料和板状燃料的性能分析研究,开发了针对多种燃料的燃料性能分析程序BEEs;在多物理场耦合分析方面,搭建了多物理场耦合框架,结合热工水力、中子物理和燃料性能分析程序,实现了核反应堆多物理场耦合的精细分析。本文搭建的核反应堆系统多维度多物理场耦合有限元分析平台可为核反应堆系统多维度多物理场耦合高保真数值模拟分析提供有力支持。Abstract: The nuclear reactor system is complex and the operating environment is harsh, resulting in the complex phenomena of multi-physics coupling. The multi-physics coupling codes developed in the early stage shows limitations on codes' scalability and generality. Therefore, it is of great significance to build a multi-physics coupling framework and conduct research on key technologies in coupling problems, which may accelerate the development process of autonomous multi-physics coupling platform in China. In this paper, the multi-dimensional and multi-physics coupling finite element analysis platform for nuclear reactor developed by XJTU-NuTHeL was introduced. The main work consisted of the development of thermal-hydraulic model, the research of fuel performance analysis technology and the establishment of multi-physics coupling framework. In terms of thermal-hydraulic calculation, XJTU-NuTHeL conducted a series of studies on pressurized water reactors and advanced reactors grounded in the advanced multi-physics coupling framework, and developed the nuclear reactor system safety analysis code, NUSAC. In addition, a subchannel analysis model tailored for liquid metal fast reactors was established, and the fully coupled subchannel transient analysis code, FLARE, was developed. NUSAC and FLARE were then verified against relevant codes and experimental data. In the realm of fuel performance analysis, considering the wide application of finite element method in solid mechanics and its versatile modeling capabilities, XJTU-NuTHeL developed a fuel performance analysis code, BEEs, based on finite element method. The code could not only conduct multi-physics coupling analysis for traditional rod fuels under steady and transient conditions, but also extends its applicability to accident tolerant fuels and other fuels with diverse geometric shapes. This paper focused on the study and analysis of coated particle dispersed fuel and plate type fuel. The multi-scale simulation results of coated particle dispersed fuels, as well as the thermomechanical and corrosion behavior of plate type fuels were shown. In the context of multi-physics coupling analysis, the efficiency and accuracy of different mesh grid mapping schemes were studied and a multi-physics coupling framework was established. An example of the framework was then presented, showcasing the integration of the fuel performance code BEEs, the Monte Carlo neutron physics code OpenMC, and reactor system safety analysis code NUSAC. The keys parameters of mechanics, thermal-hydraulic and neutronics were obtained and analyzed through the coupling different codes. The multi-dimensional and multi-physics coupling finite element analysis platform built in this paper can provide a strong support for the high-fidelity numerical simulation of nuclear reactor multi-scale and multi-physics coupling.
-
Keywords:
- multi-physics ,
- finite element ,
- system analysis ,
- subchannel ,
- fuel performance
-
-
[1] SZILARD R, ZHANG H, KOTHE D, et al. The consortium for advanced simulation of light water reactors[R]. US: Idaho National Laboratory, 2011.
[2] ENERGY O O N. Advanced modeling & simulation[EB/OL]. https://www.energy.gov/ne/advanced-modeling-simulation.
[3] MARTINEAU R, ANDRS D, CARLSEN R, et al. Multiphysics for nuclear energy applications using a cohesive computational framework[J]. Nuclear Engineering and Design, 2020, 367: 110751.
[4] TURNER J A, CLARNO K, SIEGER M, et al. The virtual environment for reactor applications (VERA): Design and architecture[J]. Journal of Computational Physics, 2016, 326: 544-568.
[5] RIBES A, CAREMOLI C. Salome platform component model for numerical simulation[C]//Proceedings of the 31st Annual International Computer Software and Applications Conference (COMPSAC 2007). Beijing: IEEE, 2007.
[6] PARK H J, KIM S J, KWON H, et al. BEAVRS benchmark analyses by DeCART stand-alone calculations and comparison with DeCART/MATRA multi-physics coupling calculations[J]. Nuclear Engineering and Technology, 2020, 52(9): 1896-1906.
[7] 杨文,胡长军,刘天才,等. 数值反应堆原型系统开发及示范应用研究进展[J]. 原子能科学技术,2021,55(9):1537-1546. YANG Wen, HU Changjun, LIU Tiancai, et al. Research progress of virtual reactor system development and demonstration application[J]. Atomic Energy Science and Technology, 2021, 55(9): 1537-1546(in Chinese). [8] 曹良志,彭良辉,万承辉,等. CAP1400数值反应堆系统关键技术研究及示范应用[J]. 原子能科学技术,2022,56(2):213-225. CAO Liangzhi, PENG Lianghui, WAN Chenghui, et al. Development and application of CAP1400 numerical reactor system[J]. Atomic Energy Science and Technology, 2022, 56(2): 213-225(in Chinese). [9] 吴宏春,刘宙宇,周欣宇,等. 数值反应堆的研究现状与发展建议[J]. 原子能科学技术,2022,56(2):193-212. WU Hongchun, LIU Zhouyu, ZHOU Xinyu, et al. Research status and development suggestion of numerical reactor[J]. Atomic Energy Science and Technology, 2022, 56(2): 193-212(in Chinese). [10] HALES J, WILLIAMSON R, NOVASCONE S, et al. BISON theory manual the equations behind nuclear fuel analysis[R]. US: Idaho National Laboratory, 2016.
[11] LYON W, MONTGOMERY R, ZANGARI A, et al. Fuel performance analysis capability in FALCON[R]: Palo Alto: EPRI, 2002.
[12] GOLDBERG E, PERALTA M E L, SOBA A. DIONISIO 3.0: Comprehensive 3D nuclear fuel simulation through PCMI cohesive and PLENUM models[J]. Journal of Nuclear Materials, 2019, 523: 121-134.
[13] BAURENS B, SERCOMBE J, RIGLET-MARTIAL C, et al. 3D thermo-chemical-mechanical simulation of power ramps with ALCYONE fuel code[J]. Journal of Nuclear Materials, 2014, 452(1-3): 578-594.
[14] JEONG G Y, KIM Y S, JEONG Y J, et al. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel[J]. Journal of Nuclear Materials, 2018, 502: 331-348.
[15] LIU Z, ZENG W, QI F, et al. Development of multiphysics coupling system for nuclear fuel rod with COMSOL and RMC[J]. Frontiers in Energy Research, 2023, 11: 1145046.
[16] LI W, SHIRVAN K. ABAQUS analysis of the SiC cladding fuel rod behavior under PWR normal operation conditions[J]. Journal of Nuclear Materials, 2019, 515: 14-27.
[17] WILLIAMSON R. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior[J]. Journal of Nuclear Materials, 2011, 415(1): 74-83.
[18] NIU Y, HE Y, XIANG F, et al. Automatic differentiation approach for solving one-dimensional flow and heat transfer problems[J]. Annals of Nuclear Energy, 2021, 160: 108361.
[19] NIU Y, HE Y, QIU B, et al. An effective method for modeling 1D two-phase two-fluid six-equation model with automatic differentiation approach[J]. Progress in Nuclear Energy, 2022, 151: 104325.
[20] DENG C, HE Y, XIANG F, et al. Finite element based fuel performance investigation of U3Si2-FeCrAl design under normal and RIA conditions[J]. Progress in Nuclear Energy, 2022, 149: 104265.
[21] XIANG F, HE Y, NIU Y, et al. A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way[J]. Annals of Nuclear Energy, 2022, 166: 108734.
[22] HE Y, NIU Y, XIANG F, et al. Preliminary development of a multi-physics coupled fuel performance code for annular fuel analysis under normal conditions[J]. Nuclear Engineering and Design, 2022, 393: 111810.
[23] YUE Z, HE Y, XIANG F, et al. Coupled neutronics, thermal-hydraulics, and fuel performance analysis of dispersion plate-type fuel assembly in a cohesive way[J]. Nuclear Engineering and Design, 2023, 413: 112548.
[24] BERRY R A, PETERSON J W, ZHANG H, et al. Relap-7 theory manual[R]. US: Idaho National Laboratory, 2018.
[25] HU R, ZOU L, HU G, et al. SAM theory manual[R]. US: Argonne National Laboratory, 2021.
[26] LINDSAY A, HUFF K. Moltres: Finite element based simulation of molten salt reactors[J]. Journal of Open Source Software, 2018, 3(21): 298-299.
[27] 牛钰航,贺亚男,巫英伟,等. 基于MOOSE平台的高阶全隐式核反应堆一回路系统分析[J]. 核动力工程,2021,42(6):50-57. NIU Yuhang, HE Yanan, WU Yingwei, et al. Analysis of primary loop system of high-order fully-implicit nuclear reactor based on MOOSE platform[J]. Nuclear Power Engineering, 2021, 42(6): 50-57(in Chinese). [28] 牛钰航,芦韡,贺亚男,等. 基于MOOSE框架的五方程两相流分析程序开发[J]. 原子能科学技术,2021,55(8):1420-1428. NIU Yuhang, LU Wei, HE Yanan, et al. Application of high-order analysis code solving five-equation two-phase flow problem based on MOOSE[J]. Atomic Energy Science and Technology, 2021, 55(8): 1420-1428(in Chinese). [29] IVANOV K N, BEAM T M, BARATTA A J, et al. Pressurised water reactor main steam line break (MSLB) benchmark, Volume Ⅰ: Final specifications[R]. [S. l.]: OECD NEA/NSC/DOC, 1999.
[30] LOCATELLI G, MANCINI M, TODESCHINI N. Generation Ⅳ nuclear reactors: Current status and future prospects[J]. Energy Policy, 2013, 61: 1503-1520.
[31] FONTANA M, MACPHERSON R, GNADT P, et al. Temperature distribution in the duct wall and at the exit of a 19-rod simulated LMFBR fuel assembly (FFM Bundle 2A)[J]. Nuclear Technology, 1974, 24(2): 176-200.
[32] SUN R, ZHANG D, LIANG Y, et al. Development of a subchannel analysis code for SFR wire-wrapped fuel assemblies[J]. Progress in Nuclear Energy, 2018, 104: 327-341.
[33] KYRIAKOPOULOS V, TANO M E, KARAHAN A. Demonstration of pronghorn’s subchannel code modeling of liquid-metal reactors and validation in normal operation conditions and blockage scenarios[J]. Energies, 2023, 16(6): 2592-2622.
[34] 邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021,55(8):1429-1439. DENG Chaoqun, XIANG Fengrui, HE Yanan, et al. Development and validation of fuel rod performance transient analysis code based on MOOSE platform[J]. Atomic Energy Science and Technology, 2021, 55(8): 1429-1439(in Chinese). [35] 邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能分析程序开发与验证[J]. 原子能科学技术,2021,55(7):1296-1303. DENG Chaoqun, XIANG Fengrui, HE Yanan, et al. Development and validation of fuel rod performance analysis code based on MOOSE platform[J]. Atomic Energy Science and Technology, 2021, 55(7): 1296-1303(in Chinese). [36] XIANG F, HE Y, WU Y, et al. Investigation of plate fuel performance under reactivity initiated accidents with developed multi-dimensional coupled method[J]. Journal of Nuclear Materials, 2023, 583: 154537.
[37] TECDOC I. Advances in high temperature gas cooled reactor fuel technology[R]. Vienna: International Atomic Energy Agency, 2012.
[38] ZHANG C, WU Y, LIU S, et al. Multidimensional multiphysics modeling of TRISO particle fuel with SiC/ZrC coating using modified fission gas release model[J]. Annals of Nuclear Energy, 2020, 145: 107599.
[39] HALES J, WILLIAMSON R, NOVASCONE S, et al. Multidimensional multiphysics simulation of TRISO particle fuel[J]. Journal of Nuclear Materials, 2013, 443(1-3): 531-543.
[40] MARTIN D G. Considerations pertaining to the achievement of high burn-ups in HTR fuel[J]. Nuclear Engineering and Design, 2002, 213(2-3): 241-258.
[41] 向烽瑞,牛钰航,邓超群,等. 基于多物理场耦合方法的板状燃料元件性能分析[C]//中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第2册(核能动力分卷). 北京:中国原子能出版社,2021. [42] PERMANN C J, GASTON D R, ANDRŠ D, et al. MOOSE: Enabling massively parallel multiphysics simulation[J]. SoftwareX, 2020, 11: 100430.
[43] GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: A parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2009, 239(10): 1768-1778.
[44] NUNIO F, MANIL P. SALOME as a platform for magneto-mechanical simulation[J]. IEEE Transactions on Applied Superconductivity, 2011, 22(3): 4904904.
[45] CERRONI D. Multiscale multiphysics coupling on a finite element platform[D]. Italy: Universit di Bologna, 2016.
[46] JOPPICH W, KVRSCHNER M. MpCCI: A tool for the simulation of coupled applications[J]. Concurrency and Computation: Practice and Experience, 2006, 18(2): 183-192.
[47] MULTIPHYSICS C. Introduction to COMSOL multiphysics®[M]. Burlington: [s. n.], 1998.
[48] SCHMIDT R, BELCOURT K, HOOPER R, et al. An approach for coupled-code multiphysics core simulations from a common input[J]. Annals of Nuclear Energy, 2015, 84: 140-152.
[49] XIANMENG W, MINGYU W, XIAO H, et al. Multi-physics coupling simulation in virtual reactors[J]. Simulation, 2021, 97(10): 687-702.
[50] JING M, WU J. Fast image interpolation using directional inverse distance weighting for real-time applications[J]. Optics Communications, 2013, 286: 111-116.
[51] MCCASKEY A J, SLATTERY S, BILLINGS J J. Warthog: A MOOSE-based application for the direct code coupling of BISON and PROTEUS[R]. US: ORNL, 2015.
[52] DICKOPF T, KRAUSE R. Evaluating local approximations of the L2-orthogonal projection between non-nested finite element spaces[J]. Numerical Mathematics: Theory, Methods and Applications, 2014, 7(3): 288-316.
[53] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: A state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97.
[54] JASAK H. OpenFOAM: Open source CFD in research and industry[J]. International Journal of Naval Architecture and Ocean Engineering, 2009, 1(2): 89-94.
[55] LIU Y, PAN J, WANG X, et al. Development of self-reliant subchannel analysis code CORTH[J]. Nuclear Power Engineering, 2017, 38(6): 157-62.
[56] 蒋朱敏,赵文博,王金雨,等. 中子时空动力学计算程序CORCA-K的进展[J]. 强激光与粒子束,2017,29(6):066003. JIANG Zhumin, ZHAO Wenbo, WANG Jinyu, et al. Progress of the CORCA-K space-time neutronics simulation code[J]. High Power Laser and Particle Beams, 2017, 29(6): 066003(in Chinese). -
期刊类型引用(1)
1. 杨军,孙培杰,彭翠婷,胡梦岩,黄茜,张祎轩,黄宇航,罗志鹏,徐乐瑾. 世界核能科技发展前沿进展. 科技导报. 2024(23): 7-30 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 312
- HTML全文浏览量: 15
- PDF下载量: 123
- 被引次数: 2